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Abstract—An efficient implementation of the Process Man-
agement Interface (PMI) is crucial to enable fast startup of MPI
jobs. We propose three extensions to the PMI specification: a
blocking allgather collective (PMIX Allgather), a non-blocking
allgather collective (PMIX Iallgather), and a non-blocking fence
(PMIX KVS Ifence). We design and evaluate several PMI im-
plementations to demonstrate how such extensions reduce MPI
startup cost. In particular, when sufficient work can be over-
lapped, these extensions allow for a constant initialization cost of
MPI jobs at different core counts. At 16,384 cores, the designs
lead to a speedup of 2.88 times over the state-of-the-art startup
schemes.
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blocking; InfiniBand

I. INTRODUCTION AND MOTIVATION

As high-performance computing clusters continue to in-
crease in size to meet increasing computational needs, fast
and scalable startup of parallel applications becomes more
important. Reducing startup cost can save developers hours
of time while developing and debugging an application, which
often requires frequent restarts of the application. Other scenar-
ios that involve running many large-scale, short-lived jobs in
quick succession include regression testing of an application
or middleware and testing of a newly configured system. In
such cases, reducing startup time provides significant benefits
in terms of system efficiency.

The Message Passing Interface (MPI) [1] is the de-facto
standard for writing high-performance parallel applications. A
bottleneck in starting large MPI jobs is the cost associated
with exchanging information within the MPI library that is
needed to initialize high-performance communication chan-
nels between processes in the job. For portability, many job
launchers implement a standard “out-of-band” communication
infrastructure known as the Process Management Interface
(PMI) [2]. PMI is typically implemented as a client-server
library with the job launcher acting as the server and the MPI
library taking the role of the client.

The core functionality of PMI is to provide a global key-
value store (KVS) that the MPI processes use to exchange
information as key-value pairs. The basic operations in PMI are
PMI2 KVS Put, PMI2 KVS Get, and PMI2 KVS Fence,
which we refer to as Put, Get, and Fence, respectively. Put adds
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a new key-value pair to the store. Get retrieves a value given
a key. Fence is a synchronizing collective across all processes
in the job. It ensures that any Put made prior to the Fence is
visible to any process via a Get after the Fence.

However, current implementations of PMI scale poorly on
today’s largest systems. Figure 1 shows a breakdown of the
time taken during MPI Init when launching a simple MPI
program for different job sizes on the Stampede supercomput-
ing system at the Texas Advanced Computing Center (TACC).
For simplicity, we only show the time spent executing a PMI
exchange, and the time spent in other initialization work, e.g.,
memory registration, setting up shared memory channels, etc.
During the PMI exchange, each MPI process writes its network
address via a single Put. The processes then execute a Fence,
and each process then issues multiple Get operations to lookup
the addresses of all processes. As the job size increases, the
PMI Put-Fence-Get sequence takes a larger portion of time,
and it grows to consume the majority of the startup time at
larger scales.
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Fig. 1. Breakdown of time spent in MPI Init inside MVAPICH2

In previous work [3], we examined SLURM’s [4] imple-
mentation of PMI, and we found that the Fence operation is
responsible for most of the cost at scale. We again consider
SLURM as the baseline throughout this work, referencing
SLURM version 2.6.5. In SLURM, Fence executes an allgather
operation implemented as a hierarchical gather followed by
a k-nomial broadcast over the slurmd and srun processes.
Following up on this work, we did a more in-depth analysis
of the time taken by the allgather operation in Fence. Our



TABLE I. VOLUME OF DATA TRANSFERRED AND TIME TAKEN IN DIFFERENT PHASES OF Fence

Number Gather phase Broadcast phase Time for Total
of process → slurmd → srun srun → slurmd → process Data Time in

Processes Value Size Key Size Overhead Total Time Data Time Processing Fence
in Job (Bytes) (Bytes) (Bytes) (Bytes) (ms) (KB) (ms) (ms) (ms)

4,096 18 9 8 35 236 143 218 4.28 396
8,192 18 9 8 35 284 286 386 8.74 685

analysis found that most of the time is taken by the broadcast
from srun to the slurmds.

In Table I, we show the amount of data transferred and
the time taken for different phases of the Fence operation. The
sizes of the keys and values given in the table are representative
of the kind of PMI communication that happens in the startup
phase in the MVAPICH2 MPI library [5]. For each key or
value transferred, the PMI implementation in SLURM adds an
overhead of 4 bytes to the message. This is because SLURM’s
PMI supports key-value pairs of arbitrary length as well as
asymmetric data movement. Thus for a key of size 18 bytes
and a value of size 9 bytes, each individual process sends
a message of size 35 bytes to the local slurmd. The local
slurmd aggregates such messages from all children (both MPI
processes and other slurmds) and sends it up to its parent. This
process continues until the message reaches srun, at which
point srun aggregates all messages and broadcasts the result
to all slurmds either directly or through the SLURM tree
depending on the number of nodes in the job.

As shown in Table I, the volume of data transferred and
the time for the data transfer in the broadcast phase increase
linearly with the number of processes in the job. Note that
the volume of data transferred in the gather phase is in bytes
and the volume of data transferred in the broadcast phase
is in KiloBytes (KB). From this assessment, it is clear that
reducing the amount of total data exchanged would lead to
better performance.

The existing Put-Fence-Get semantics in PMI-2 has an-
other major drawback. The blocking nature of Fence forces the
users of PMI such as high-performance middleware like MPI
to wait idly while the operation completes. If the application
has some operations that do not depend on the values fetched
through Get, it can potentially overlap these operations while
the Fence is performed in the background. Although the current
model is simple to use and adequate at small scale, for large
numbers of processes, it leads to a lot of wasted cycles as
shown in Figure 1.

These issues lead us to the following broad challenge —
Can we enhance the existing PMI-2 design and specifica-
tion to improve the startup time of MPI-based parallel
applications on large supercomputing systems?

In this paper, we take up this challenge and propose three
extensions to the PMI specification to address them: a blocking
allgather collective (PMIX Allgather), a non-blocking all-
gather collective (PMIX Iallgather), and a non-blocking Fence
(PMIX KVS Ifence).

The first extension allows efficient exchange of values
between different processes. The second and third extensions
enable one to overlap PMI communication with other non-
communication related activities that applications and high per-
formance middleware perform during startup. Another group

has also recently proposed the addition of non-blocking PMI
operations [6]. In our work, we propose a different set of
extensions and illustrate their value.

By employing these extensions, we implement several PMI
designs that significantly reduce MPI startup costs.

II. CONTRIBUTIONS

To summarize, this paper makes the following contribu-
tions:

• Propose, design and implement the PMIX Allgather
API to reduce the amount of data being transferred as
well as avoid the data processing overheads in existing
PMI designs

• Propose, design and implement non-blocking ver-
sions of two PMI APIs - PMIX KVS Ifence and
PMIX Iallgather to allow overlap of PMI communica-
tion and other activities application / middleware need
to perform at startup

• Evaluate the benefits the new APIs have on perfor-
mance at the microbenchmark level using PMI and
MPI microbenchmarks and at application level using
NAS parallel benchmarks

We design and evaluate several PMI implementations to
demonstrate how such extensions reduce MPI startup cost.
In particular, when sufficient work can be overlapped, these
extensions allow for a constant initialization cost of MPI jobs
at different core counts. At 16,384 cores, the designs lead
to a speedup of 2.88 times over the state-of-the-art startup
schemes.

III. BACKGROUND

In this section, we provide the necessary background
information for this paper.

A. SLURM

SLURM [4] (Simple Linux Utility for Resource Manage-
ment) is a popular process manager used by many small
and large clusters. SLURM has a main controller daemon
slurmctld running on the controller node and another daemon
slurmd running on each of the compute nodes. The slurmctld
is responsible for scheduling, allocating, and managing jobs
while the slurmd launches and cleans up processes, redirects
I/O, etc. While launching a job, slurmctld instructs the slurmds
on the allocated nodes to initialize environment variables and
launch the processes. The slurmds participating in a job set up
a hierarchical k-ary tree with an srun process as the root as
shown in Figure 2.
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Fig. 2. Hierarchical communication scheme in SLURM

B. MPI over InfiniBand and High Speed Ethernet

The Message Passing Interface (MPI) [1] is one of the most
popular programming models for writing parallel applications
in high-performance computing. MPI libraries provide opti-
mized communication methods for a parallel computing job.
In particular, several convenient point-to-point and collective
communication operations are provided. High performance
MPI implementations are closely tied to the dynamics of
underlying high performance networks such as InfiniBand [7]
and aim to achieve the best communication performance on
the given interconnect. In this paper, we use MVAPICH2 [5]
for our evaluations. However, our observations in this context
are quite general and they can be applied to other high
performance MPI libraries.

C. Current MPI Job Launch Techniques

Figure 3 represents the current state-of-the-art techniques
available for launching MPI jobs on large scale supercomput-
ing systems. Existing job launch techniques can broadly be
classified into ‘completely out-of-band’ (left side of Figure 3)
and ‘partially out-of-band’ (right side of Figure 3) depend-
ing on the type of communication channel being used for
startup based communication. In the ‘completely out-of-band’
scheme, all PMI communication is routed through the out-of-
band channel (typically TCP/IP). In the ‘partially out-of-band’
scheme, a small portion of the PMI communication happens on
the out-of-band channel while the bulk of the data is transferred
over the high-speed network. In our previous work [3], we
designed the ‘partially out-of-band’ mode of job startup by
proposing new extensions to the PMI standard. In this paper
we propose a different set of non-blocking extensions that
exclusively use the out-of-band channel.

IV. PROPOSED EXTENSIONS

A. PMIX Allgather

A common use of PMI, especially when starting small or
medium scale MPI jobs, is to have each MPI process Put its
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Fig. 3. State-of-the-art techniques for MPI job launch

network address as a value providing its rank as the key. Then
after a Fence, each process Gets the address for every other
process. As an optimization for this use case, we propose
PMIX Allgather, abbreviated as Allgather, which combines
the three separate operations of Put, Fence, and Get into
a single collective call. The signature of the function is as
follows:

int PMIX_Allgather (
const char value[],
void *buffer );

The caller provides a NULL terminated UTF-8 string as
input and an output buffer of size (Number of Processes ∗
Maximum Allowed Length of V alue). Upon completion,
the output buffer holds the values provided by all processes
ordered by PMI rank. All strings in the output buffer are
NULL padded to the maximum allowed length, which enables
a process to look up the value for a given rank by calculating an
offset (rank ∗MaxLength) and directly accessing the buffer.

As an optimization, an additional input parameter that
holds the maximum length of the value strings can be intro-
duced to reduce the size of the buffer the caller has to provide.

B. PMIX Request

Use of non-blocking collectives to overlap communication
with computation is a well-known concept in MPI [8–19]. We
propose similar constructs for the PMI standard.

To support non-blocking operations, we first introduce a
new type called PMIX Request, which is an opaque handle
to an outstanding non-blocking operation. The proposed non-
blocking functions presented later initiate a non-blocking op-
eration and return a request handle that is later used to wait for
the completion of the operation. The lifetime of the associated
request handle is managed by the PMI implementation.
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Fig. 4. High-level overview of PMIX Iallgather

C. PMIX Wait

Each request returned by a non-blocking function must be
completed by a call to PMIX Wait, referred to as Wait, which
we define with the following signature:

int PMIX_Wait (
PMIX_Request request );

The Wait function takes a request handle obtained from an
earlier call to a non-blocking function. If the operation has
completed, the function deallocates the request handle and
returns. Otherwise, the calling process is blocked until the
associated operation completes.

D. PMIX Iallgather

We propose a non-blocking variant of Allgather, called
PMIX Iallgather that we refer to as Iallgather, which initiates
the operation and returns immediately. It takes the same
parameters as PMIX Allgather with the addition of a request
parameter:

int PMIX_Iallgather (
const char value[],
void *buffer,
PMIX_Request *request_ptr );

Once initiated, the caller must not access the output buffer
until the associated request is completed with a call to Wait.
Once the Wait call returns, the caller is allowed to reuse or
dispose of the buffer. Figure 4 shows the high-level design of
PMIX Iallgather.

E. PMIX KVS Ifence

Fence guarantees that data for all previously performed
Puts will be available to subsequent Get operations. However,
the Gets are often not required immediately after the Fence. If
Fence is implemented as a blocking operation, client processes
cannot proceed while the Fence is in progress. In SLURM, the
Fence is progressed by the slurmds without requiring partici-
pation from the client processes. This provides an opportunity
for overlap where the clients could initiate the Fence operation
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Fig. 5. High-level overview of PMIX Ifence

and return immediately allowing the slurmds to progress the
Fence operation in the background.

We propose a new function called PMIX KVS Ifence,
referred to as Ifence, that leverages this. The function signature
is:

int PMIX_KVS_Ifence (
PMIX_Request *request_ptr );

Once initiated, the caller must not execute Get calls until
the associated request is completed with a call to Wait. The
high-level design of PMIX Ifence is depicted in Figure 5.

Note that some PMI implementations may emulate the
behavior of Ifence with their Fence and Get methods without
breaking existing PMI semantics. A Fence can initiate a non-
blocking operation and return immediately, similar to the pro-
posed Ifence, and then the subsequent Get can block until the
non-blocking Fence operation completes. The difference is that
Ifence is guaranteed to be non-blocking whereas Fence may
block, thus Ifence provides a stronger bound on performance
to the user.

V. DESIGN OF PROPOSED PMI APIS

In this section, we describe and evaluate different designs
for exchange of information while maintaining consistency and
ease of use offered by PMI semantics.

A. Limitations of PMI2 KVS Fence

The standard form of the Fence operation serves the
purpose of synchronizing the key-value stores at each node to
reach a consistent state across nodes. As shown in Table I, the
SLURM implementation of Fence involves two major costs:

1. A gather operation to srun of all key-value pairs from
each slurmd followed by broadcast of a cumulative string
representing the concatenation of all key-value pairs (synchro-
nizing operation). This can be expressed as a gather phase:

∀i : 0 < i < Nput : srun← (key, value)i



followed by a broadcast phase:

∀i : 0 < i < Nput :

slurmd← (key, value)0, · · · , (key, value)Nput−1

where Nput is the total number of Puts performed after the
end of the previous Fence and before the current Fence.

Nput is independent of number of processes as each pro-
cess can perform an arbitrary number of Puts before invoking
Fence. Figure 6 illustrates the format of the packed data
transferred between different processes and slurmds in a single
Fence. In the gather phase, slurmds collect data from local
processes and children slurmds and propagate it upwards. In
the broadcast phase, each slurmd receives the cumulative string
containing all key-value pairs from their parent slurmd or srun.
The semantics of Fence necessitates the inclusion of the “key”
field in all of the data transfers. The “key” is an arbitrary-
length string, so the format also records a “length” field to
enable proper parsing at the destination process.

Data from Process 1 Data from Process 2 Data from Process N

Data Packed for Transfer Between slurmds 

Data Stored in Hash Table
in slurmd at Completion

Header

Length

Key

Value

. . .

. . .

:

Fig. 6. Data packing format used in PMI2 KVS Fence

2. The second step is the creation of a hash-table,
which involves extracting and storing key-value pairs
from the cumulative string into a hash table by the
slurmds. The cumulative string, which represents the set
{(key, value)0, · · · , (key, value)N−1}, may not be sorted
when it is received by the slurmds. Both key and value in
a pair are represented as strings. The slurmd iterates over the
cumulative string, reads each key-value pair, and inserts it into
a chained hash table. This can be visualized as:

∀ (key, value) ε cumulative string :

HashTable(h(key))← value

where h is the applied hash function.

Although an insertion into a hash table is an O(1) opera-
tion, collisions, number of memory allocations and resizing
increase with large number of keys and impose a signifi-
cant overhead. As a result the hash-table creation imposes
overheads that grow linearly with size of the MPI job as
O(n) and involves a large constant khash. While this is not
optimal, maintaining a hash table is required to support fast
Get operations.

Having identified the above two steps as the most time
consuming steps in the PMI2 KVS Fence operation, we also

note that it is not possible to avoid these overheads while
supporting arbitrary keys and allowing different processes to
Put different numbers of key-value pairs. However, in practice
the PMI based communication MPI libraries perform is more
limited. For example in MVAPICH2, all processes make a
single key-value pair available for others, and each process
queries for the values provided by every other processes.
This communication pattern is symmetric, and each process’s
rank is associated with only one value. This observation
motivates our proposal for PMIX Allgather, which executes
this communication pattern with lower overhead.

srun

slurmd

slurmd

Step 2: Propagate
values to parent slurmd 

Step 5: slurmd forwards
gathered data to children

Step 4: srun sends
gathered data to children

Step 3: Propagate
values to parent srun

Client
Process

Step 1: Send value
to local slurmd

Step 7: Send ordered values
to client processes

Broadcast
Phase

Gather
Phase

Step 6: Order values
by source rank

Fig. 7. Different steps involved in PMIX Allgather

B. Design of PMIX Allgather

Figure 7 illustrates the implementation details of our
PMIX Allgather design in SLURM. In PMIX Allgather, we
combine the three separate operations of Put, Fence, and Get
into a single collective call. The slurmd receives one value
from each local client process, tags the value with the rank
of the client, and writes the value into a local buffer. After
collecting the value from each client, it forwards the buffer up
the SLURM tree to the srun process. The srun process then
broadcasts the full set of values back down the tree. The gather
and broadcast steps thus resemble the existing implementation
of Fence. However, the number of rank-value pairs in this case
is equal to the number of processes. Therefore the gather phase
is equivalent to:

∀i : 0 < i < Nprocs : srun← (i, valuei)

where Nprocs is the number of processes.



In PMIX Allgather, we address the two major bottlenecks
observed in PMIX KVS Fence. First, the use of integers for
keys reduces the buffer overhead that results from using string
representation of MPI ranks. This improvement is achieved
when sizeof(rank as string) > sizeof(rank as integer),
specifically when rank ≥ 1000 if the rank is treated as a 32-
bit integer. However, as noted in Section I, SLURM adds a
4 Byte overhead to any string, so the integer representation
is always more compact. In practice, the keys are generally
padded and prefixed, which improves this even further. This
results in time reduction for both the gather and the broadcast
phases of the allgather due to reduced message size.

Secondly, instead of creating the hash table, each slurmd
allocates an array to hold Nprocs values. Once the slurmd
receives the cumulative string from srun, it goes through the
buffer and and copies each value into the array using its rank
as the index. This operation can be represented as:

∀ (rank, value) ε cumulative string

Array(rank)← value

This only requires one memory copy operation for each
rank-value pair and the result is an array containing Nprocs

values sorted by their rank. This processing can be performed
by either srun or slurmd. However, it is disadvantageous to
do it in srun as the result array has all strings padded and
hence would cause unnecessary data to be broadcast. Since all
slurmds can perform this operation in parallel, it does not add
extra latency to the operation.

For accessing the keys, the clients directly read from the
array as the value from the process is available at offset rank∗
Maximum Allowed Length. This gives some additional
improvement over the SLURM implementation of Fence where
each Get operation incurs the overhead of communication with
the slurmd process and a hash-table lookup.

Data from Process 1 Data from Process 2 Data from Process N

Data Packed for Transfer Between slurmds 

Data Sent to
Processes at Completion

Header

Length

Rank

Value

. . .

. . .

. . .

Fig. 8. Data packing format used in PMIX Allgather

Figure 8 illustrates these two key benefits of the proposed
PMIX Allgather compared to the existing PMI2 KVS Fence.
The intermediate data packing format used for communication
between the srun and slurmds is more compact as the keys
are not included. Storing the end-result in an array indexed by
source rank helps avoid creation and lookup from a hash table.

C. Design of PMIX Iallgather and PMIX KVS Ifence

In many typical applications or middlewares using PMI,
we can observe the following pattern:

//Produce key and values
PMI2_KVS_Put();
PMI2_KVS_Fence();
PMI2_KVS_Get();
//Use key and values
//Do unrelated computation

The client process’s responsibility during an ongoing Fence
is limited to informing the local slurmd at the initiation
and waiting for the response at completion. As described in
Section V-A, only the srun and the slurmds are involved in
progressing the actual operation. By using the non-blocking
variant Ifence, the client can overlap unrelated computation
that does not depend on the key-value pairs fetched via Get.
The modified application would look like:

//Produce key and values
PMI2_KVS_Put();
PMIX_KVS_Ifence();
//Do unrelated computation
PMIX_Wait();
PMI2_KVS_Get();
//Use key and values

A similar transformation can be made with Iallgather, for
which the pseudo code becomes:

//Produce key and values
PMIX_Iallgather();
//Do unrelated computation
PMIX_Wait();
//Use key and values

With an MPI library using Ifence and Iallgather, there are
two sources of possible overlap. First, inside MPI Init certain
initialization procedures must be performed, e.g., registering
host memory with the network interface, setting up shared
memory segments, allocating resources, etc. Time taken by
these tasks are independent of process count and application
characteristics, and thus provides a constant amount of overlap.
For larger jobs, the total time required for completion of
Ifence or Iallgather is higher, and these tasks are not sufficient
to maximize the overlap potential, which causes the second
source, the application, to come into play.

Most MPI applications do not start communication with
other processes immediately after MPI Init. Performing dif-
ferent computation to generate local data or performing file
I/O before entering the communication phase is a common
behavior. We define the amount of time an application spends
after MPI Init before initiating the first connection as setup
phase. If the setup phase is long enough, the Ifence or the
Iallgather operation can be completely overlapped, reducing
the total execution time. Furthermore, the processes are no
longer bound by the synchronization property of the Fence
and can proceed without incurring delay due to process skew.
In general, the case for non-blocking PMI collectives are along
the lines of works that exist in the MPI context [11].

D. Progressing Non-blocking Operations

An efficient implementation of non-blocking collectives
requires an agent to progress the communication in the
background while the caller can perform other tasks. This
problem has been studied extensively in the context of MPI



TABLE II. VOLUME OF DATA TRANSFERRED AND TIME TAKEN IN DIFFERENT PHASES OF Allgather

Number Gather phase Broadcast phase Time for Total
of process → slurmd → srun srun → slurmd → process Data Time in

Processes Value Size Key Size Overhead Total Time Data Time Processing Allgather
in Job (Bytes) (Bytes) (Bytes) (Bytes) (ms) (KB) (ms) (ms) (ms)

4,096 18 4 4 26 165 104 201 0.18 275
8,192 18 4 4 26 256 208 356 0.36 471

non-blocking collectives. One solution is based on threads
where the calling process creates a thread which initiates
the operation and checks for completion. However, such an
implementation requires one extra thread per client process
which can adversely affect the performance [20].

In our design, the communication is progressed by slurmd,
which is equivalent to an existing node-level agent. The benefit
of this design is that slurmd is a standalone daemon process
and already performs similar tasks, e.g., sending heartbeat
message to the slurmctld. Additionally, the data exchange is
performed in an out-of-band channel when the processes are
still in their computation phase, so it has minimal effect on
the application communication.

E. Supporting concurrent Non-blocking Operations

Supporting concurrent non-blocking operations can be use-
ful for improving overlap in applications. However, in practice
the data exchanges over PMI performed inside MPI Init can
be completed using a single Ifence or Iallgather operation.
With this in mind, we do not support concurrent non-blocking
operations for simplicity. Any non-blocking operation must
be completed by Wait before initiating another. However, the
proposed functions support this functionality and an imple-
mentation can provide this feature if desired.

F. Memory Footprint

For Allgather and Iallgather the processes are required
to provide sufficient buffer space to hold all the values.
Additionally, slurmd needs to allocate a temporary buffer of the
same size. These two factors might suggest that the proposed
extensions impose a significant memory overhead. However, in
practice the MPI libraries allocate the same amount of memory
to hold the addresses of the remote processes, even if they only
communicate with a small subset. Furthermore, once a key-
value pair is exchanged through Fence or Ifence, it is persisted
inside slurmd till the application exits or calls PMI2 Finalize.
However, the values exchanged trough Allgather or Iallgather
are not persisted inside slurmd which can free or reclaim the
allocated buffer as soon as the operation is complete. Thus, the
amount of memory available to the MPI processes is actually
larger for the proposed Allgather and Iallgather.

VI. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup used
to conduct micro-benchmark and application experiments to
evaluate the improvement from the proposed extensions. An
in-depth analysis of the results is also provided to correlate
design motivations and observed behavior.

A. Experimental Setup

We used the Stampede supercomputing system at TACC to
take all performance numbers. Each compute node is equipped
with Intel SandyBridge series of processors, using Xeon dual
eight-core sockets, operating at 2.70 GHz with 32 GB RAM.
Each node is equipped with MT4099 FDR ConnectX HCAs
(56 Gbps data rate) with PCI-Ex Gen2 interfaces. The oper-
ating system used is CentOS release 6.3, with kernel version
2.6.32-279.el6 and OpenFabrics version 1.5.4.1. SLURM-2.6.5
and MVAPICH2-2.0b were used to implement the proposed
designs. All numbers reported were taken in fully subscribed
mode with 16 processes per node.
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Fig. 9. Comparison of the existing Fence (PMI2 KVS Fence) and the
proposed Allgather (PMIX Allgather)

B. PMI Microbenchmark Level Performance

To measure the performance of Fence, we use a small
application that repeatedly performs a Put followed by a Fence
operation. For fairness, we use the calling process’s rank as the
key and a 32-byte string as the value. For Allgather, we use
the same value as the input. As seen from Figure 9, Allgather
outperforms Fence by 38% at 16,384 processes. Once the
Allgather operation is complete, all of the values are available
in the client process’s memory but after completion of Fence,
the process must perform Get operations to access the keys.
This additional overhead of Fence is not shown in Figure 9.

Table II shows the amount of data transferred and associ-
ated times for Allgather using the same set of key-value pairs
used for Fence as shown in Table I. Using the integer rank as
the key clearly leads to drastic reduction in data transfer time
which is reflected in the total time to complete the operation
as well. These lengths were chosen to mimic the key-value
pairs used in the PMI exchanges in MVAPICH2.



We also measure the performance of Ifence and Iallgather
followed immediately by Wait and compare it against their
respective blocking variants (Fence and Allgather). We find
that there is no additional overhead introduced by the proposed
non-blocking collectives.
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Fig. 10. Time taken by MPI Init

C. MPI Level Performance

Figure 10 shows the impact of the proposed extensions on
MPI Init time. Replacing the Fence operation with Allgather
yields 20% benefit at 16K processes. However, the most
significant improvement comes from using the non-blocking
PMI extensions which allows MPI Init to complete with no
communication with other processes. This results in a constant
MPI Init time independent of the number of processes. At
16,384 processes, MPI Init with Iallgather exhibits speedup
of 2.88 over MPI Init based on blocking Fence. The predicted
improvement at larger scale is even higher.
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D. Overlap with Computation

To measure the overlap, two different types of computation
are used. In the first, we make the client processes sleep for the

amount of time the blocking Fence or Allgather takes while
the Ifence or Iallgather is being performed. This allows for
perfect overlap at all scales as shown in Figure 11.
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However, as slurmd progresses the Ifence or Iallgather,
it needs to contend for CPU and memory with the client
processes. To simulate the worst case scenario, we make all the
client processes busy spin on the CPU for the same amount
of time. As expected, this increases the wall clock time for
the operation and thus reduces the observed overlap. The
amount of overlap increases with process count and reaches
89% with 16K processes. The higher overlap observed in
PMIX Iallgather results from its more efficient data transfer
and processing as shown in Table II.

Due to better communication performance Iallgather re-
duces the amount of time an application must spend during its
setup phase in order to completely overlap the PMI exchange
latency. At 16K processes the required time is reduced by
1.7 times by using the Iallgather operation, as illustrated in
Figure 12. The time spent in MPI Init already covers a portion
of the total computation time required for perfect overlap,
hence it represents an upper bound on how long the setup
phase needs to be for the application to reap the full benefit.
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E. Effect of Proposed Extensions on Application Performance

We also measure the wall-clock time of some applications
from the NAS Parallel Benchmarks (NPB) [21] with class
B data and 4,096 processes in fully subscribed mode and
observe improvements of up to 10% in total running time
as shown in Figure 13. Use of non-blocking constructs like
Ifence and Iallgather yields the most significant benefit. The
improvement achieved depends on the application, specifically
the time the application spends in the setup phase before the
communication phase. In an application with a long setup
phase the benefit of Iallgather over Ifence may not be apparent.

VII. RELATED WORK

There has been significant work in the area of improving
performance and scalability of launching parallel applications.
Multiple process managers like PBS [22], MPD, Mpiexec [23],
and Hydra [23] have been developed to reduce job scheduling
and launch times. Wang et al [24] have proposed a multi-
controller based job scheduling system called SLURM++.

Yu et al [25] explored using InfiniBand to reduce start up
costs of MPI jobs. Sridhar et al proposed using a hierarchical
ssh based tree structure similar to SLURM’s node daemon
implementation [26]. Gupta et al [27] proposed a smp-aware
multi level startup scheme with batching of remote shells.
Goehner et al analyzed the effect of different tree configura-
tions and proposed a framework called LIBI [28]. The impact
of node level caching on startup performance was evaluated
by Sridhar et al in [29].

The most closely related work to this paper is a project
called PMIx [6]. PMIx proposes a number of new PMI func-
tions including a non-blocking Fence. We extend that effort
with an implementation and experimental demonstration of the
value non-blocking PMI operations. We also propose new PMI
allgather routines to optimize a common data exchange pattern
in MPI startup.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed, designed and implemented
the PMIX Allgather API to reduce the amount of data being
transferred as well as avoid the data processing overheads
in existing PMI designs. We also proposed, designed and
implemented non-blocking versions of two PMI APIs —
PMIX KVS Ifence and PMIX Iallgather to allow overlap of
PMI communication and other activities application / middle-
ware need to perform at startup. We evaluated the benefits the
new APIs have on performance at the microbenchmark level
using PMI and MPI microbenchmarks and at application level
using NAS parallel benchmarks. Our experimental evaluation
demonstrated how such extensions reduce MPI startup cost.
In particular, when sufficient work can be overlapped, these
extensions allowed for a constant initialization cost of MPI
jobs at different core counts. At 16,384 cores, the designs lead
to a speedup of 2.88 times over the state-of-the-art.

As part of future work we plan to add support for multiple
concurrent non-blocking collective operations. We also plan to
design and evaluate the impact of high performance networks
like InfiniBand on speeding up the PMI based communication.
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Scalable Startup for Parallel Applications,” in Proceed-
ings of the 1st International Workshop on Runtime and
Operating Systems for Supercomputers. ACM, 2011, pp.
41–48.

[28] J. D. Goehner, D. C. Arnold, D. H. Ahn, G. L. Lee, B. R.
de Supinski, M. P. LeGendre, B. P. Miller, and M. Schulz,
“LIBI: A Framework for Bootstrapping Extreme Scale
Software Systems,” Parallel Computing, vol. 39, no. 3,
pp. 167–176, 2013.

[29] J. K. Sridhar and D. K. Panda, “Impact of Node Level
Caching in MPI Job Launch Mechanisms,” in Recent Ad-
vances in Parallel Virtual Machine and Message Passing
Interface. Springer, 2009, pp. 230–239.


