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Abstract—Dense systems with large number of cores per
node are becoming increasingly popular. Existing designs of
the Process Management Interface (PMI) show poor scalability
in terms of performance and memory consumption on such
systems with large number of processes concurrently accessing
the PMI interface. Our analysis shows the local socket-based
communication scheme used by PMI to be a major bottleneck.
While using a shared memory based channel can avoid this
bottleneck and thus reduce memory consumption and improve
performance, there are several challenges associated with such
a design. We investigate several such alternatives and propose a
novel design that is based on a hybrid socket+shared memory
based communication protocol and uses multiple shared memory
regions. This design can reduce the memory usage per node by
a factor of Processes per Node. Our evaluations show that
memory consumption per node can be reduced by an estimated
1 GB with 1 million MPI processes and 16 processes per node.
Additionally, performance of PMI Get is improved by 1,000
times compared to the existing design. The proposed design is
backward compatible, secure, and imposes negligible overhead.

Keywords-PMI, Shared Memory, Hash Table, Memory Scala-
bility, MPI

I. INTRODUCTION

Innovations in manufacturing technology and increasing
computational demands have led to a rapid emergence of
multi- and many-core architectures in High Performance
Computing (HPC) systems. Next generation architectures for
exascale computing are expected to have even higher core-
count per node. However, total memory on such architectures
are not expected to increase dramatically, leading to reduced
amount of available memory per core. Consequently, mem-
ory scalability of the software — programming models and
supporting frameworks — is becoming more important.

Most parallel programming frameworks need to interact
closely with the system’s process manager to bootstrap and
initialize itself. The process manager is a logically central-
ized entity that is responsible for launching and terminating
processes, providing environment information to processes and
manage information exchange among processes of the parallel
application [1]. The Process Management Interface (PMI) is
a portable interface between the parallel programming library
and the process manager. In addition to providing various basic
information and functionality required by the programming
library, PMI also facilitates information exchange by exposing
a globally shared key-value store and a set of functions
(PMI2_KVS_Put, PMI2_KVS_Fence and PMI2_KVS_Get) to

interact with it. PMI is used by many major implementations
of various parallel programming frameworks like Message
Passing Interface (MPI) and OpenSHMEM as well as most
popular process managers including SLURM [2], Hydra [3],
and mpirun_rsh [4]. While PMI itself is generic enough for
almost any parallel programming framework, in this paper we
primarily consider the MPI programming model. However,
our proposed solutions are equally applicable to other parallel
programming frameworks as well.

The PMI standard consists of two separate specifications —
the PMI API proper (also known as the client API) exposed
to the users of PMI, and the wire protocol for communication
between the application processes and the process manager.
The wire protocol defined by the PMI standard assumes a
client-server model. The application processes or the MPI
library work as the client and the process manager acts as
the server. The communication between the client and the
server is done through a stream of requests and replies. This
client-server based communication model comes with certain
drawbacks. Since the server can process only one or a few
requests in parallel, with a large number of concurrent clients
the requests get serialized at the server. Figure 1 shows the
effect of increasing number of concurrent requests on the time
taken for completing each request. Even with no inter-node
communication, a large number of concurrent requests results
in a significant increase in average turnaround time. Figure 1
shows the time taken for for a single PMI2_KVS_Get request
with different number of concurrent clients. The latency goes
up from approximately 20µs to 250µs as the number of clients
increases from 1 to 32. The setup used for this experiment is
described in Section VII-C1.

One of the major uses of PMI in high performance MPI
libraries is to exchange information relevant to setting up com-
munication channels over the high-performance networks like
InfiniBand. Each communicating process publishes its own
network address (a hardware address and an unique identifier
for each process) via PMI Put and fetches the addresses for its
peers using PMI Gets. As shown in Figure 1, the latency for
a single PMI Get can be quite high compared to the typical
communication latency for small message transfers observed
in typical high-performance networks (around 1µs). As this
request-reply based model prevents efficient bulk-sharing of
data between clients and the server, MPI libraries are forced
to copy this information into the process’s memory. Since
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Fig. 1. Time taken for one PMI2_KVS_Get with different number of
processes per node

PMI provides no delete functionality, the process manager also
holds a copy of the entire key-value store for the lifetime of
the job. Consequently, the information is replicated PPN +1
times per node where PPN is the number of MPI processes
per node. Figure 2 shows the amount of memory consumed
for storing the network endpoint addresses for different process
counts with 16, 32, and 64 processes per node in the MVA-
PICH2 [5] MPI library. With a million MPI processes and 16
processes per node, more than 1 GB of memory would be
consumed per node for storing this address table.
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Fig. 2. Memory usage per node for different number of processes with 16,
32 and 64 processes per node

The performance and memory scalability issues are only
going to be exacerbated by the next generation architectures
with denser nodes and larger number of cores. To address
this challenge, we propose to use shared memory regions
between the PMI server and the client to reduce duplication
and improve access latency. Instead of copying the information
from the key-value store to each process’s private memory,
the information can be pushed to a shared memory region
by the process manager and made available to the client
processes. The client processes would then able to access the
data directly without going through a costly request-response
cycle involving the server. However, there are several design
challenges related to which must be addressed in such a shared
memory based design of the PMI protocol:

• How to synchronize concurrent writes to the shared mem-
ory region by multiple clients to maintain consistency?

• How can we avoid solutions based on memory-polling to
avoid adverse impact on performance?

• Are there any security issues associated with granting
client processes write permission to the shared memory
regions and how can one work around them?

• Can the changes be backward compatible with the exist-
ing PMI specification?

In this paper we identify and address these challenges and
evaluate our proposed solutions in terms of memory efficiency,
scalability and performance.

II. BACKGROUND

In this section, we describe the background information
necessary for the paper.

A. Process Management Interface (PMI)

PMI defines a portable interface between the parallel appli-
cation processes and the process manager. The PMI standard
consists of two separate specifications - the client side API and
the wire protocol. The MPI library calls the client side APIs
while the wire protocol is used for communication between
the client and the server. While the PMI specification does
not require a PMI provider to adhere to the wire protocol,
the overwhelming majority of the available process managers
support the reference wire protocol for interoperability.

1) PMI Put-Fence-Get: In addition to providing support for
creating, connecting with, and exiting parallel jobs, accessing
information about the parallel job or the node on which a
process is running, exchanging information related to the MPI
Name publishing interface, PMI also provides a mechanism to
exchange information used to connect processes together. To
achieve this, PMI defines a common Key-Value Store (KVS)
for all the parallel processes that are part of a job. The PMI
API also defines the following functions to interact with the
key-value store:

• PMI2_KVS_Put — Adds a new key-value pair to the key-
value store. Each process can perform arbitrary number
of Puts. Multiple Puts with the same key may lead to
undefined behavior.

• PMI2_KVS_Get — Looks up the value for a given key
from the key-value store.

• PMI2_KVS_Fence — Fence is a collective operation that
must be called by all processes. Any key-value pairs
added before the Fence must be visible to the Gets
performed later.

2) PMI Allgather: In most implementations, the Put and
Get are implemented as local (intra-node) operations while
Fence performs the inter-node communication to distribute the
key-value pairs to all the connected processes. In our earlier
work [6] we proposed an extension named PMIX_Allgather to
optimize the common use case of symmetric data movement
where each process broadcasts a single key-value pair and
looks up the same information from every other process. This
is functionally similar to each process performing a single Put
using their rank as the key, followed by a Fence and Nprocs−1
Gets. We also proposed a set of non-blocking extensions to



overlap the PMI operations with initialization and computa-
tion. In this paper we use the function PMIX_Allgather which
is defined as:

• PMIX_Allgather— Each process provides an input value
and a buffer. The input values are gathered into the
buffer ordered by their source rank. Once the operation
is complete, the values can be directly accessed from the
buffer.

B. MPI over InfiniBand and High Speed Ethernet

InfiniBand is a popular switched interconnect standard be-
ing used by more than 47% of the Top500 supercomputing
systems. [7] according to the November ’15 ranking. For two
processes to communicate over InfiniBand, their network end-
point addresses must be exchanged beforehand through an out-
of-band communication channel. MPI libraries for InfiniBand
typically use PMI as the mechanism to implement this out-
of-band exchange. In this paper, we use the MVAPICH2 [5]
MPI library for our evaluations.

C. SLURM

SLURM [2] (Simple Linux Utility for Resource Manage-
ment) is a popular process manager used by many HPC
clusters. SLURM has a main controller daemon slurmctld
running on the controller node and another daemon slurmd
running on the compute nodes. The slurmctld is responsible
for scheduling, allocating, and managing jobs while the slurmd
launches and cleans up processes, redirects I/O, etc. While
launching a job, slurmctld instructs the slurmds on the al-
located nodes to initialize environment variables and launch
the processes. The slurmds participating in a job set up a
hierarchical k-ary tree with an srun process as the root as
shown in Figure 3.

Head Node Compute
Node
srun

slurmd

Application
Process

Fence

Put

Get

Fig. 3. Hierarchical communication scheme in SLURM

Each slurmd works as the local PMI server and maintains a
copy of the key-value store. When a client process performs a
Put, the key-value pair is stored in a temporary buffer. During
a Fence, the key-value pairs are aggregated and sent to the

parent slurmd/srun. Once the root of the tree (srun) has all
the pairs, it broadcasts them through the tree to all children
slurmds. The slurmds then merge the incoming pairs into the
local key-value store which can be accessed by the clients
by making Get requests. A similar process is followed during
Allgather, except the output buffer is copied to the process’s
memory and the values are accessed directly from the output
buffer without further interaction with the local slurmd.

III. HYBRID SHARED MEMORY BASED COMMUNICATION

In the existing design, all communication between the PMI
clients and the server go over local UNIX sockets. The server
opens sockets to the local clients during initialization, waits
on a select call and waits for client requests. We refer to this
design as Pure Socket Based design. With the introduction of
memory regions that are shared between the clients and the
server, all or some of the client-server communication can be
moved over from the sockets.

A. Pure Shared Memory Based Communication

In the Pure Shared Memory Based design, all communica-
tion between the client and the server go over a shared memory
based channel. The server polls on the shared memory channel
to listen for requests and replies through the same channel.
Predefined areas within the shared memory region act as the
buffers required for writing and reading the messages. There
are a few drawbacks associated with this design:

1) Impact on Performance: With a pure shared memory
channel, the server and the clients need to use a polling or
a lock based design. While the polling method achieves low
latency, it is quite CPU intensive and wastes a lot of cycles.
Further, this takes away valuable CPU cycles away from
MPI processes, significantly hurting application performance.
Using a lock based approach can reduce this cost but would
require spawning an extra thread for processing inter-node
message to avoid deadlocks.

2) Security: In this design, the clients (application pro-
cesses) require permission to write to a memory region owned
by the server (process manager). In many HPC systems, the
process manager needs to perform various book-keeping and
maintenance tasks and hence runs with elevated privileges
(e.g. SLURM, PBS). Since the client is controlled by the
application, the process manager would be susceptible to
buffer overflow or privilege escalation attacks from malicious
or erroneous client codes if the clients are granted write
permission to the memory regions held by the privileged
process manager.

B. Hybrid Socket+SHMEM Based Communication

Based on these observation, we choose a hybrid socket +
shared memory based communication scheme for our design.
We observe that the number of Put and Fence operations
performed by each MPI process is generally constant with
respect to the number of processes. Thus, moving them to
a shared memory channel would neither improve nor de-
grade performance noticeably. On the other hand, Get calls



are responsible for bulk of the data transfer between the
server and the clients. Consequently, performing Gets over
the faster shared memory communication channel would lead
to better performance. Thus, granting read-only access to
shared memory regions to clients is sufficient to achieve high
performance without sacrificing on security. Furthermore, this
strategy avoids the issue of synchronizing multiple concurrent
writers to the shared memory region as only the PMI server
is granted write permission.

In the hybrid design, the request and response messages for
most functions like PMI2_KVS_Put and PMI2_KVS_Fence
still go through the socket based path. For PMI2_KVS_Get,
the clients can directly read from the shared memory region
to extract the value for the requested key.

IV. SHARED MEMORY BASED PUT, FENCE, AND GET

When a client process performs a Put, the server stores the
new key-value pair in a temporary buffer. During a Fence,
these key-value pairs are exchanged with other remote servers.
Once the Fence operation is complete and the server has
received all the key-value pairs, the server opens a shared
memory region, stores all the key-value pairs in it, and sends
the Fence completion response to the clients. This response
also contains the information required to access the shared
memory region. Once the clients receive this information, they
can open the shared memory region in a read-only mode and
access the contents. We enhance the PMI2_KVS_Get function
to only perform a lookup from the shared memory region and
avoid any socket-based communication with the local PMI
server. These changes do not change the existing Put-Fence-
Get APIs and are transparent to the MPI library.

A. Shared Memory Storage for Key-Value Pairs

One important design choice here is which data structure to
use for the key-value store and how to represent it efficiently in
shared memory. The choice of the data structure is dictated by
the capabilities and access patterns it needs to support. As the
number of Gets performed is very large compared to any other
operation and the Get can be called while initiating a message
transfer, the Get operation is latency-critical. Further, the PMI
standard allows only insertion or updates but no deletion
on the key-value store. Also, it would be wasteful to use a
data structure that cannot be packed efficiently into a shared
memory region or requires an intermediate representation
while being created. Based on these requirements, the chosen
data structure must offer these characteristics:

• Insertion and update only
• Supports fast lookups
• Ability to grow efficiently
• Can be packed efficiently into shared memory

B. Single Shared Memory Region Based Design (SHMEM-1)

Based on these requirements, a hash table is a natural
choice due to its support for fast lookups. PMI Put and Get
operations directly translate to Insert and Lookup operations
on a hash table. The Fence operation is equivalent to merging

multiple hash tables into one. However, representing a hash
table in shared memory comes with additional challenges.
In a traditional non-shared-memory hash-table which resides
inside a process’s private address space, the buckets occupy
a contiguous memory space. However, the key-value pairs
can be placed in arbitrary locations in the memory in a non-
contiguous fashion. In addition, offsets must be used instead
of pointers as pointers obtained in the context of one process
are not valid in other processes.

Empty Head Tail Key Value Next

1 2 3

Fig. 4. Representation of a hash table in a single shared memory region

To store the hash table in a shared memory region, a chained
hash scheme is used as illustrated in Figure 4. The region
contains a number of buckets, which can hold an arbitrary
number of key-value pairs (entries). Each bucket contains
offsets to the first (head) and last (tail) entries of the chain.
If there is a single key inside a bucket, both the head and the
tail point to the same location. Each pair is accompanied by
an offset which points to the next entry in the same bucket.
Essentially, the region holds a number of logically connected
linked-lists of key-value pairs. At initialization, both the head
and tail of each bucket are set to an invalid value (e.g. -1).
Note that head, tail, and next are all offsets from the starting
address of the shared memory region.

To implement the insert operation on the hash table, strings
of varying length need to be allocated inside the shared
memory region. Using predefined slots by padding the strings
to their maximum length is space-inefficient. To avoid this,
a custom memory allocator which works within a shared
memory region is used. The allocator keeps track of the free
memory available and returns an offset to an empty location
of requested size. The allocator does not need to maintain a
list of free regions as memory is never deallocated. However,
as the number of inserted entries (key-value pairs) increase,
the number of buckets must be increased as well to keep the
number of collisions low and the allocator needs to deal with
that.

If the key-value pairs require relocation during a resize
operation, any entries contained in the hash table would be
invalidated. In such a scenario, a larger region is allocated
and the hash table is rebuilt by migrating all the new key
and values into the new region. This operation becomes more
expensive as the number of entries increases. As the number
of entries is dictated primarily by the number of processes,
this approach can negatively impact the performance of the
Fence operation at scale.



C. Dual Shared Memory Region Based Design (SHMEM-2)

The key observation that allows us to avoid this limitation
associated with a single shared memory region based hash
table is that a hash table mapping strings (keys) to strings
(values) can be decomposed into two separate entities — the
keys and the values themselves, and the mapping which asso-
ciates the location of a key to the location of a value. Based
on this observation, two separate shared memory regions can
be used — one to hold the hash table or the mapping and
another to store the key/value pairs. A scheme similar to the
one described in Section IV-B can be used to connect the
buckets in the first region (referred to as Table) to the key-
value pairs in the other region (referred to as KV S).
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Fig. 5. Representation of a hash table in two shared memory regions

Figure 5 illustrates how a hash table can be represented
by two shared memory regions with an example. The bucket
marked as 1 contains a single key-value pair and both its head
and tail points to the location of that pair in the KV S region.
On the other hand, the head and tail of bucket 2 contains the
offset to two different key-value pairs in KV S which marks
the starting and ending entries of a chain. Entries in the chain
point to the next element using the next field (marked as
3). KV S.top stores the offset to the beginning of the unused
space inside KV S and is initialized to 0.

We now describe how operations like Insert, Lookup and
Resize can be efficiently implemented in a hash table repre-
sented in two shared memory regions.

1) Insertion of a New Key-Value Pair: Algorithm 1 shows
the procedure to insert a new key-value pair into the hash-
table. During insertion, the key and value are copied to KV S,
next is initialized to an invalid value (-1), and KV S.top is
incremented by the space used by the incoming pair. The
key and value strings are NULL terminated and does not
require storing their length information or any additional
padding. If there is not enough free space left in the KV S to
accommodate the incoming key-value pair, the shared memory
file must be increased in size. However, since both Table
and KV S only contain offsets and not actual addresses, no
modification of the data is required.

After the pair is stored in KV S, the key is hashed and
the destination bucket is chosen. If the head or tail is
uninitialized, the bucket is empty and both head and tail are

Algorithm 1: Algorithm to insert a Key-Value Pair
input: Key, V alue, Table,KV S

entry ← KV S.top;
entry.next← −1;
entry.key ← Key;
entry.value← V alue;
KV S.top← KV S.top+ entry.length;

idx← Hash(key);
bucket← Table[idx];
if bucket.head ≤ 0 then

bucket.head← bucket.tail← entry;
else

last← KV S[bucket.tail];
last.next← bucket.tail← entry;

end

updated to the offset of the starting address of the newly stored
pair. Otherwise, the bucket already contains a list of key-value
pairs. The last pair is located by the tail and its next as well
as the tail itself are updated to offset of the newly stored pair.
Figure 6 illustrates the insertion of 5 key-value pairs into 3
buckets and the states of the two shared memory regions after
each insertion.

2) Lookup of a Key-Value Pair: The PMI2_KVS_Get func-
tion uses the lookup operation shown in Algorithm 2. Based on
the key’s hash, a bucket is identified and read from the Table.
The bucket’s head points to a list of key-value pairs which
is then traversed using the next pointer until the intended
pair is located or the end of the list is reached. If the search
is successful, a pointer to the value string is returned to the
caller; otherwise an error code is returned. Unlike other PMI
functions, this requires no communication with the local PMI
server.

Algorithm 2: Algorithm to lookup a Key-Value Pair
input : Key, Table,KV S
output: V alue associated with the Key

idx← Hash(key);
bucket← Table[idx];
entry ← KV S[bucket.head];
while entry ≥ 0 do

if entry.key = Key then
return entry.value;

else
entry ← KV S[entry.next];

end
end
return NotFoundError;

It should be noted that the insertions are performed by
the server while the lookups are done by the client. For this
scheme to work correctly, both the clients and the server must
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Fig. 6. Insertion of Key-Value pairs into shared memory based hash table

use the same hash function. This is not an issue if both the
server and client libraries come from the same provider. In
case of different providers, one possible solution is to use
well known hash functions like md5 or SHA, which can be
negotiated during initialization.

3) Resizing the Hash Table: Since the number of key-
value pairs is not known beforehand, the hash-table must
be able to grow to accommodate new pairs. Growing the
KV S region is straight forward, if the available free space
(KV S.size−KV S.top) is not enough to store the incoming
key-value pair, the region is enlarged to twice its current size.
If the shared memory is backed by a file, it can be enlarged
in place without allocating additional temporary memory and
copying the data. Compared to the single region based design
where in-place enlargement is impossible, this represents a
significant reduction in unnecessary data movement. If the
ratio of number of keys and number of buckets grows beyond
a threshold, the hash table needs to be re-sized to reduce
number of collisions. To achieve this, the Table is re-sized
and reinitialized. Then all the pairs in the KV S is iterated
through and the corresponding buckets in Table are updated
similar to insertion. If the target bucket of a pair is empty, it’s

head and tail are updated to the pair’s offset. If the bucket
is not empty, the bucket’s tail and the corresponding pair’s
next is updated to the current pair. These steps are shown in
Algorithm 3. Note that since both Table and KV S only store
offsets, these operations preserve their validity.

Algorithm 3: Algorithm to re-size the hash table
input : Table,KV S

foreach entry ∈ KV S do
entry.next← −1;
idx← Hash(entry.key);
bucket← Table[idx];
if bucket.head ≤ 0 then

bucket.head← bucket.tail← entry;
else

last← KV S[bucket.tail];
last.next← bucket.tail← entry;

end
end



For clients performing multiple Fence operations, the dy-
namic resizing of the tables does not cause any additional
issues. Since a client process cannot perform a Put or a Get
operation while a Fence is in progress, the client can close
the previously opened shared memory regions while sending
the Fence request. Since the Fence response from the server
always contains the updated information about the shared
memory regions, the client can reopen them and perform
lookup operations.

V. SHARED MEMORY BASED ALLGATHER

In our earlier work [6] we proposed and designed a set
of new PMI functions including PMIX_Allgather. This is a
collective function where each process provides an input value
and an output buffer. The rank of the source process is used as
an implicit key and all the values are gathered and broadcasted
to all the slurmds. The slurmds then sort the values by their
source rank and copies them into the user provided buffer.
The values are padded such that the value from rank r will
be available at offset r ∗ MaxLength where MaxLength
is known beforehand. Once the operation is completed the
clients can directly access the values from the output buffer.
The Allgather function is optimized for the common scenario
where data movement is symmetric. Compared to Fence,
Allgather leads to less network traffic and scales better in terms
of performance and memory usage.

The changes required for shared memory based Allgather is
simpler compared to Fence. Due to the lack of explicit keys in
Allgather, the output contains only an array of strings instead
of a hash-table. This can be efficiently represented in a single
shared memory region. Consequently, the clients only need
to open a single shared memory region. Also, the clients no
longer need to allocate a buffer to hold all the collected values.
The hybrid communication scheme described in Section III-B
is used for Allgather. Once PMIX_Allgather is completed, the
server creates a shared memory region containing all the values
sorted by the source rank and sends the name and size of
shared memory region to the clients over the socket based
channel. The client then opens the shared memory region and
returns the starting address of the shared memory region to
the caller process. The caller process (MPI library) can then
directly access the values from the shared memory without
making more PMI calls, by using the source rank as the index.

VI. DISCUSSION

A. Backward Compatibility

Interoperability with the current standard is an important
benefit and would ease the adoption of the proposed designs
in HPC systems. We discuss any changes required in both the
PMI client API and the wire protocol.

1) API Level Compatibility: One major benefit of the
proposed design is that it does not change the PMI API. Thus,
existing users of PMI such as MPI libraries would continue
to work well and benefit from the faster lookup performance.
To achieve the reduced memory footprint, the libraries would
require minor changes. The only change required for an MPI

library using PMIX_Allgather is to use the returned buffer
instead of allocating a new output buffer. For libraries using
Put-Fence-Get, the results of the Get operation should be used
directly instead of being stored in an array.

2) Wire Protocol Compatibility: There is another aspect of
backward compatibility - the wire protocol used for the socket
based communication between the server and the client. A
server with shared memory support should work well with a
client without said support and vice versa. We need to consider
these two cases:

New Client, Old Server: A server with shared memory
support sends additional fields related to shared memory in
the response to a Fence command. If a client detects a Fence
response without said fields, it can conclude that the server
does not support shared memory and transparently fall back
to the default mode of socket based communication.

Old Client, New Server: In the reversed scenario where
the server supports shared memory but the client does not,
the client can simply ignore the additional fields. For such
clients, a call to PMI Get would result in a lookup request to
the server and the server can fulfill the request by accessing
the shared memory. The only caveat is that if the client treats
the additional fields as an error condition, it will likely mark
the Fence call as a failure and abort. However, most prevalent
PMI clients like SLURM and mpirun_rsh do not suffer from
this issue.

Another possibility here is to add a completely new PMI
function (for example, PMIX_SHMEM_Init) which must be
explicitly called after PMI2_Init to enable the shared memory
mode. However, this approach requires changes to the client-
side API and by the end user (MPI library).

3) Compatibility with Non-blocking PMI Extensions:
Non-blocking PMI functions like PMIX_KVS_Ifence and
PMIX_Iallgather were proposed to allow overlap of PMI
communication with MPI initialization or application com-
putation [6]. The shared memory based designs are fully
compatible with the non-blocking PMI collectives. The clients
close the open shared memory regions while calling Ifence
or Iallgather. When the clients call PMIX_Wait to check
for completion of the outstanding PMI operations, it needs
to process the response similar to the proposed design and
open the shared memory regions. Essentially, a Fence or an
Allgather can be transparently replaced with a Fence followed
by Wait or an Allgather followed by Wait respectively.

VII. EXPERIMENTAL EVALUATION

In this section, we describe the experimental setup used
to conduct micro-benchmark and application experiments to
evaluate the improvement from the proposed extensions. An
in-depth analysis of the results is also provided to correlate
design motivations and observed behavior.

A. Experimental Setup

We used the Stampede supercomputing system at TACC to
take all performance numbers. Each compute node is equipped
with Intel SandyBridge series of processors, using Xeon dual
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Fig. 7. Comparison of memory used for network endpoint addresses by MPI processes

eight-core sockets, operating at 2.70 GHz with 32 GB RAM.
Each node is equipped with MT4099 FDR ConnectX HCAs
(56 Gbps data rate) with PCI-Ex Gen2 interfaces. The operat-
ing system used is CentOS release 6.3, with kernel version
2.6.32-279.el6 and OpenFabrics version 1.5.4.1. SLURM-
14.11.4 and MVAPICH2-2.1 compiled with Intel icc-13.0.1
were used to evaluate the proposed designs. For the Get level
latency results shown in Figure 1 and Figure 8(a), we used
a set of nodes on Stampede with identical setup except four
sockets (32 cores) per node and 1 TB RAM. Since there were
only 16 such nodes available, they were not used for the large
scale experiments. All other numbers reported were taken in
fully subscribed mode with 16 processes per node.

B. Impact on Memory Usage

With the existing design (Default), PMI users like MPI
libraries are required to replicate the key-value store into their
private address space. Since each process maintains a copy of
the data, there are PPN + 1 copies of the data in a node
with PPN MPI processes. Figure 7(a) and Figure 7(b) show
the actual and estimated memory consumption per node by
MPI processes for storing this information. For MVAPICH2
running with 1 million MPI processes and 16 processes per
node, that translates to approximately 960 MB on each node.
With the Allgather based design, the keys are not required
which slightly reduces the memory consumption to approxi-
mately 800 MB.

With the new design (SHMEM), the clients do not copy
the data from the server. As a result, only a single copy of
the data is stored on a node irrespective of the number of
processes in the job or on the node. Consequently, memory
consumption for storing the information exchanged through
PMI is reduced by a factor of PPN . As shown in Figure 7(b),
with 1 million processes, this results in only 64 MB for the
Fence and only 40 MB for the Allgather based design. The
reduction in memory usage is even higher with larger scale
jobs or on nodes with larger number of cores. Both the shared
memory designs based on single and dual regions show nearly
identical memory consumption.

C. Performance of PMI2_KVS_Get

In the existing client-server based communication scheme,
the server serializes all PMI operations. As a result, multiple
clients cannot access the key-value store in a truly parallel
fashion. With the proposed shared memory based design,
no communication is required during the PMI2_KVS_Get
operation. Each client can independently look up any key-
value pair from the shared memory region. Consequently,
the Get operation in this scheme requires no synchronization
and shows constant latency with arbitrary number of client
processes.

To compare the performance of PMI2_KVS_Get with and
without shared memory designs, each client performs 10,000
Gets of a randomly selected key from the key value store and
the average latency is reported. We show the average of 10 runs
in Figure 8(a). Without shared memory (Default), the latency
of a single Get is 20µs for a single client but increases to 250µs
for 32 client processes per node. This is expected as each Get
request suffers from queuing delay and needs to wait longer
before being processed by the server. Since Get is a local
operation and does not involve inter-node communication, the
average latency does not depend on the number of nodes.

With the dual shared memory based design (SHMEM-2),
the Get operation shows a near-constant latency of 0.25µs
independent of the number of client processes. This represents
a benefit of 1,000 times over the current design. We also
evaluated the single shared memory based design (SHMEM-
1). Although this design requires access to a single shared
memory region, Get latency shows less than 10% improvement
compared to the dual region design. We believe this is due to
the fact that even if the buckets and the key-value pairs are
in the same region, they are not located closely enough to
noticeably reduce the number of cache misses.

1) Impact of Load Factor on Get Latency: While designing
a hash-table, one important design decision is the choice of
the load factor. The load factor of a hash table is defined as
Number of Keys

Number of Buckets . It is easy to see that with a higher load
factor, the probability of collisions (multiple keys landing in
the same bucket) increases. Consequently, the average time
to lookup a key increases with a larger load factor. While a
smaller load factor can decrease the average lookup latency, it
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also requires more memory. This time-memory trade-off must
be considered while designing such a scheme.

Figure 8(b) shows the effect of different load factors on the
latency of dual shared memory region based Get operation.
The difference is minor but noticeable with large number of
keys. The average latency observed is improved by 9% and
20% respectively with load factor of 0.5 and 0.25. Load factors
above 1 are possible but not recommended [8] as it can lead
to a large number of collisions and poor performance. Note
that with the dual region design, choosing a smaller load
factor only increases the memory usage for the shared memory
region which holds the hash table. The size of memory region
holding the key-value pairs is not affected. We used a load
factor of 1 in all other experiments.

D. Overhead of the Proposed Shared Memory Based Designs

In the proposed designs, both the server and the client
needs to perform a few additional tasks like opening shared
memory regions. To measure any overhead introduced by
these operations, we compare the average of 1,000 iterations
of PMI2_KVS_Fence and PMIX_Allgather at different scales
with 16 processes per node and 10 runs each. Each process
performed a single Put with a 16 Byte key and a 32 Byte value
before the Fence. As shown in Figure 9(a), the performance
of the dual shared memory region based (SHMEM-2) Fence
operation is identical to the default design and there is no

noticeable overhead. The single region based design (SHMEM-
1), however, shows a small overhead due to the extra copy
operations.

We compare the existing Allgather operation (Default) with
the shared memory based design (SHMEM) in Figure 9(b).
The allgather was performed with a 32 byte value. At small
and medium scale, time taken by the shared memory based
design is same as the default design. However, at large scale
the shared memory based design performs slightly better. This
is explained by the fact that in the output buffer is copied
PPN times over local socket from the server to the client in
the default scheme. But in the shared memory based design,
this copying is avoided and only the location and size of the
relevant shared memory region is passed to the client.

VIII. RELATED WORK

There has been significant work in the area of improving
scalability of MPI libraries. Balaji et al [9] investigated the
scalability of the MPI specification and implementations at
large scale.

The design and implementation of the PMI interface was
described by Balaji et al [1]. In our earlier work [10] we
explored the use of high-speed networks like InfiniBand to
speed up the data exchange in PMI and proposed a new PMI
collective called PMIX_Ring to minimize data movement at
initialization. We further proposed non-blocking extensions



to the PMI interface in [6] where we demonstrated the use
of split-phase Fence and Allgather routines to achieve near-
constant startup time for MPI applications. Some of these
designs are currently available in popular process managers
including SLURM and mpirun_rsh. Similar designs have been
proposed by other groups, such as the PMIx project [11] as
well.

Design and implementation of efficient and fast hash tables
have been a significant area of research for a long time. A
survey of hash table techniques appears in Maurer et al [12].
Dynamic resizing of hash tables was first proposed by Larson
et al [8]. Litwin et al introduced and evaluated the linear
hashing scheme in [13]. Bennett et al [14] shows a methods
of reorganizing collisions in buckets to improve performance.
However, there has been relatively little work on representing
hash tables in shared memory. A few instances of lock-
based and lock-free implementations of hash tables on shared
memory can be found online [15], [16], [17]. To the best of
our knowledge this is the first such study of using multiple
shared memory regions for efficient storage and lookup of
hash table.

IX. CONCLUSION

In this paper, we explored different aspects of a shared
memory based design for the PMI protocol. We considered
different channels and communication schemes between the
PMI clients and the server. We also explored different designs
for efficiently exposing the PMI key-value store through single
and multiple shared memory regions and evaluated them in
terms of different metrics like performance and security. We
designed a hash table that segregates its buckets and the key-
value pairs into two separate shared memory regions to allow
fast lookups and efficient resizing. This hash table was used
to implement PMI’s global key-value store and allow direct
read access from the clients. With this design, we were able
to reduce memory usage by avoiding the data duplication
between the PMI server and the clients. This allows PMI
users (e.g. MPI libraries) to avoid copying the values to
their private address space, which can reduce the memory
consumption for a node by a factor of Processes per Node.
We also improved performance of PMI Get by eliminating
the inherent serialization present in the existing current client-
server model. Our evaluations with SLURM and MVAPICH2
showed projected savings of nearly 1 GB in memory usage
per node with 1 million MPI processes and 16 processes per
node. In addition, the latency of PMI Get with 32 processes
per node was reduced from 250µs to 0.25µs, representing an
improvement of 1,000 times compared to the default design.

The proposed designs will be available with the upcoming
MVAPICH2 release.
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