
Contention-Aware Kernel-Assisted MPI Collectives
for Multi-/Many-core Systems

Sourav Chakraborty, Hari Subramoni, Dhabaleswar K Panda
Department of Computer Science and Engineering, The Ohio State University

Email: {chakraborty.52, subramoni.1, panda.2}@osu.edu

Abstract—Multi-/many-core CPU based architectures are see-
ing widespread adoption due to their unprecedented compute
performance in a small power envelope. With the increasingly
large number of cores on each node, applications spend a
significant portion of their execution time in intra-node com-
munication. While shared memory is commonly used for intra-
node communication, it needs to copy each message once at the
sender and once at the receiver side. Kernel-assisted mechanisms
transfer a message using a single copy but suffer from signif-
icant contention with a large number of concurrent accesses.
Consequently, naively using Kernel-assisted copy techniques in
collectives can lead to severe performance degradation. In this
work, we analyze and propose a model to quantify the contention
and design collective algorithms to avoid this bottleneck. We
evaluate the proposed designs on three different architectures -
Xeon, Xeon Phi, and OpenPOWER and compare them against
state-of-the-art MPI libraries - MVAPICH2, Intel MPI, and Open
MPI. Our designs show up to 50x improvement for One-to-all
and All-to-one collectives (Scatter and Gather) and up to 5x
improvement for All-to-all collectives (Allgather and Alltoall).

Keywords-Collective Communication, Kernel-assisted, Cross-
Memory Attach, Multi-core, CMA, MPI, HPC

I. INTRODUCTION

Modern High-Performance Computing (HPC) systems al-
low scientists and engineers to tackle grand challenges in
their respective domains and make significant contributions
to their fields. The design and deployment of such ultra-
scale systems is fueled by the increasing use of multi-/many-
core environments (Intel Xeon, Xeon Phi, and upcoming
OpenPOWER architectures). These many-core architectures
offer unprecedented compute power to end users within a
single node enabling them to perform their compute within
one or a few such high-power nodes. In fact, the usage trends
of the various HPC systems that are part of the US National
Science Foundation (NSF) [1] funded Extreme Science and
Engineering Discovery Environment (XSEDE) [2] project in-
dicate that jobs with one or a few nodes (≤ 9) account for
the lion’s share of jobs being submitted and total CPU hours
consumed. These trends are illustrated by Figures 1(a) and 1(b)
respectively.

The Message Passing Interface (MPI) [4] is a very popular
parallel programming model for developing parallel scientific
applications. MPI-based applications typically spend a large
portion of the overall execution time inside the MPI library
to progress communication operations. Thus, the performance
of end applications is closely tied to the performance the un-
derlying MPI implementation being used. There exists several

 35
 40
 45

1 2 3 4 5 6 7 8 910+
(Avg)

N
o
.
o
f
J
o
b
s
 (

M
ill

io
n
s
)

Number of Nodes in Job

 2016
 2015
 2014

 0
 5

 10
 15
 20
 25
 30

(a) Number of Jobs Submitted

 140
 160
 180

1 2 3 4 5 6 7 8 910+
(Avg)

C
P

U
 H

o
u
rs

 (
M

ill
io

n
s
)

Number of Nodes in Job

 2016
 2015
 2014

 0
 20
 40
 60
 80

 100
 120

(b) Total CPU Hours Consumed
Fig. 1. Number of submitted jobs and total CPU hours consumed by
jobs of different sizes over past three years in XSEDE clusters. Small
scale jobs are the majority in both categories [3].

high-performance implementations of the MPI standard (e.g.
OpenMPI [5], IntelMPI [6], and MVAPICH2 [7]) that offer
excellent performance and scalability on modern multi-/many-
core architectures interconnected using high-performance in-
terconnects like InfiniBand [8] and Omni-Path [9].

Given the usage trends seen with XSEDE systems, it is
expected that the performance MPI implementations are able
to deliver for communication happening within a node (intra-
node communication) will have a significant impact on the
overall performance of end applications. Researchers have
done a vast amount of work to enhance the performance of
MPI-based intra-node point-to-point and collective commu-
nication operations [10–16]. Based on the insights gained
from these efforts, most high-performance MPI libraries offer
two different options for high-performance intra-node com-
munication — 1) the shared memory based two-copy transfer
and 2) kernel-assisted single-copy transfer. These studies have
also shown that, due to the overhead involved in terms of
exchanging control information and context switches with
from user space to kernel space, the kernel-assisted single-
copy transfer scheme is typically beneficial for larger mes-
sages (≥ 16KB). Multiple kernel modules (e.g. LiMIC [17],
KNEM [18], and CMA [19]) are available to MPI libraries
to implement these kernel-module-based transfer operations.
Table I summarizes the support for various kernel assisted
copy mechanisms available in various state-of-the-art MPI
libraries.

TABLE I. Support for various kernel assisted copy mechanisms in
modern MPI libraries. CMA is the most widely supported.

CMA [19] KNEM [18] LiMIC [17]

MVAPICH2 2.3a [7] X × X
Intel MPI 2017 [6] X × ×
Open MPI 2.1.0 [5] X X ×

1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

2 Readers
4 Readers
8 Readers

16 Readers
32 Readers
64 Readers

(a) Different Source Processes (All-to-all)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

2 Readers
4 Readers
8 Readers

16 Readers
32 Readers
64 Readers

(b) Same Process, Same Buffer (One-to-all)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

2 Readers
4 Readers
8 Readers

16 Readers
32 Readers
64 Readers

(c) Same Process, Different Buffers (One-to-all)

Fig. 2. Impact of different communication patterns on CMA Read latency on Knights Landing

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 2 4 8 16 32 64

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Concurrent Readers

4KB
16KB
64KB

256KB
1MB
4MB

(a) Knights Landing, (68 physical cores)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 2 4 8 16 28

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Concurrent Readers

4KB
16KB
64KB

256KB
1MB
4MB

(b) Broadwell, (28 physical cores)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 2 4 8 16 32 64 128

C
M

A
 R

e
a
d
 L

a
te

n
c
y
 (

u
s
)

Concurrent Readers

4KB
16KB
64KB

256KB
1MB
4MB

(c) Power8 (20 physical cores)

Fig. 3. One-to-all communication with different number of concurrent readers and message sizes on different architectures

A. Motivation
While the design space for kernel-assisted intra-node point-

to-point communication operations has been extensively stud-
ied, the challenges associated with and the potential perfor-
mance benefits such single-copy schemes bring to collective
operations are not well known. For instance, while the point-
to-point based studies indicate that the kernel-assisted schemes
are beneficial for larger messages (≥ 16KB), this may not
hold true for collective operations where there is increased
concurrency in the communication. Similarly, the performance
trade-off between using read-based vs. write-based approaches
are not well known. In this section, we study the performance
characteristics of the kernel-based single-copy transfer for
different data access patterns on the Intel Xeon, Intel Knights
Landing (KNL), and IBM OpenPOWER architectures. While
the raw communication performance of LiMIC, CMA and
KNEM are quite similar [19], a CMA based solution offers the
most portability since it is available on newer Linux kernels by
default and does not require installation of a kernel module.
Furthermore, the CMA-based approach is more secure as it
handles process permissions appropriately and does not incur
the overhead of cookie creation like LiMIC and KNEM. Thus,
we choose CMA for our study.

Figure 2 illustrates the performance trends seen on the Intel
Knights Landing architecture for three different communica-
tion patterns — 1) All-to-all, 2) One-to-all, and 3) All-to-one.
Figure 2(a) shows the performance seen with an All-to-all
access pattern where processes are trying to access different
memory locations at peer processes. The peer processes are
chosen carefully to avoid multiple processes talking with one
process at the same time. This access pattern scales well as the
number of communicating pairs increases. Figure 2(b) shows
the performance of a One-to-all access pattern where all peer
processes are attempting to access the same memory location
in the address space of one target process. We observe that
such an access pattern scales poorly as the number of processes

participating in the operation increases. This indicates that the
kernel-based single-copy transfer scheme has some bottlenecks
when multiple process are trying to access the same buffer
from the same process. In order to narrow down the cause
for the degradation, we perform a secondary experiment for
the One-to-all access pattern where all peer processes attempt
to access different memory locations in the address space
of a single source process. As seen in Figure 2(c), similar
degradation with increased concurrency exists even when
the memory locations are different. This indicates that the
bottleneck occurs when the source process is the same.
Similar performance trends can be observed for All-to-one
communication using CMA write operations. To validate the
general applicability of the above insights, we measure the
communication latency of the One-to-all access pattern on
other state-of-the-art multi-/many-core processor architectures.
As shown in Figures 3(a), 3(b), and 3(c), the contention
trends are similar across all three architectures Knights
Landing, Intel Xeon and IBM OpenPOWER.

To identify the root cause of the bottleneck, we use
ftrace [20] kernel tracer to profile the One-to-all access pattern
where all peer processes are attempting to access different
memory locations in the address space of one target process.
Figure 4 shows the breakdown of a CMA read operation
with varying number of pages as well as different levels of
contention. As shown here, the majority of the time is spent
inside the get user pages function, which takes a lock on
the page table structure of the source/target process once per
page. It also shows that for the same number of pages, the
time taken by the Lock operation increases with contention.
Hence, we can conclude that the lock operation inside the
get user pages function is the source of the contention.
All three kernel-based copy mechanisms (CMA, LiMIC, and
KNEM) use this function to ensure that the pages of the remote
process are available and are equally affected.

While many different collective algorithms have been pro-

Syscall

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

10 50 100 10 50 100 10 50 100

No Contention

14 Readers

28 Readers

T
im

e
 T

a
k
e
n
 (

u
s
)

Number of Pages

Copy Data
Pin Pages
Acquire Locks
Permission Check

Fig. 4. Breakdown of one-to-all communication with CMA read for
varying buffer sizes and process counts on Broadwell.

posed and studied on shared-memory systems, the impact of
this lock contention on the performance and applicability of
collective algorithms is not well-known. Due to the adoption
of increasingly dense many-core architectures, the impact of
this bottleneck is only going to be exacerbated.

B. Contributions
These observations lead us to the following broad challenge

- How can we design contention-aware, kernel-assisted col-
lectives for emerging dense many-core systems? In this paper,
we take up this broad challenge and propose an analytical
model to predict the performance of kernel-assisted commu-
nication. Our model validation indicates that the proposed
model is able to accurately predict the actual performance.
We use this model to evaluate known algorithms for One-to-
all, All-to-one, and All-to-all collectives and determine their
applicability to a given message size and architecture. We also
propose new contention-aware algorithms that significantly
outperform the existing algorithms. Experimental evaluation
on three different architectures show that the proposed designs
are able to significantly outperform the existing state-of-the-art
MPI libraries such as Intel MPI, OpenMPI and MVAPICH2.
To summarize, the major contributions of this paper are:
• Identify and quantify the sources of contention in kernel-

assisted transfers on modern HPC systems
• Propose models to predict the performance of kernel-

assisted collectives
• Design contention-aware, kernel-assisted One-to-all, All-

to-one, and All-to-all collective operations
• Validate the proposed model by comparing it with ob-

served performance
• Demonstrate the benefits of the proposed designs over

state-of-the-art MPI libraries on multiple architectures

II. COST MODELING

Based on the insights obtained from the kernel tracing, we
construct a model for the communication cost by extending
the model used by Thakur et. al. in [21]. The notations used
in the model is described in Table II. In this model, the cost of
transferring a message with no contention is α + nβ + ldηs e.
With contention, average time to acquire the lock for each
page increases by a factor of γ. Thus, the cost of transferring a
message with contention becomes α+nβ+ lγdηs e. For CMA,
the startup cost α consists of the system call overhead and
the time to check if the calling process has the appropriate
permissions to access the memory of the remote process.

TABLE II. Notations used in the cost model

Symbol Description

α Startup cost per message
β Transfer time per Byte
η Number of Bytes transferred
s Number of Bytes in a page
p Number of processes per Node
l Time to lock and pin a page with no contention
γc Contention factor with c concurrent readers/writers

T sm
coll

Time taken to execute an intra-node collective
< coll > with a very small message

To measure these costs on different systems, we trigger
individual steps inside the CMA read function by passing
different arguments to it. The signature for the function is
as follows:

ssize_t process_vm_readv(pid_t pid,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);

Setting different values for liovcnt and riovcnt causes it
to execute different steps, For example, setting liovcnt to 0
and riovcnt equal to the buffer size causes all the pages to be
locked and pinned but no data to be copied. This can be used
to measure the time taken to lock and pin different number of
pages. A set of such experiments is shown in Table III. The
measured times include the previous steps, hence T4 ≥ T3 ≥
T2 ≥ T1. The model parameters can be calculated from these
numbers by varying the value of N . For example. α = T2,
l = T3−T2

N , and β = T4−T3

Ns . Table IV lists the values of the
model parameters on different architectures.

TABLE III. Determining the time taken by various steps in a CMA
based transfer

Operation Time Taken Buffer Size liovcnt riovcnt

System Call T1 0 Byte 0 Byte 0 Byte
Access Check T2 1 Byte 0 Byte 1 Byte

Lock+Pin T3 N Pages 0 Byte N Pages
Copy Data T4 N Pages N Pages N Pages

TABLE IV. Empirically obtained values for the model parameters
on different architectures. These values are dependent on the system
hardware and operating system.

Parameter KNL Broadwell Power8

α 1.43 us 0.98 us 0.75 us
β−1 3.29 GBps 13.2 GBps 3.17 GBps
l 0.25 us 0.11 us 0.53 us
s 4,096 Bytes 4,096 Bytes 65,536 Bytes
γp 0.11p2 + 1.6p 0.18p2 + 0.83p 0.04p2 + 1.95p

To determine the value of the contention factor, we measure
the time taken to lock different number of pages with different
concurrency, as shown in Figure 5. The trends match our
assumption that contention factor is independent of the number
of pages being locked (message size) and depends only on the
concurrency. The difference between intra-socket and inter-
socket contention can also be observed. Figure 5(b) shows that
there is a noticeable increase beyond 14 concurrent readers in
the Broadwell node which has two sockets, each equipped
with 14 cores. A similar increase beyond 10 processes can

 1

 10

 100

 1000

 10000

 0 8 16 24 32 40 48 56 64

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

10 Pages
50 Pages

100 Pages

 1

 10

 100

 1000

 10000

 0 8 16 24 32 40 48 56 64

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

Average
Best Fit

(a) KNL

 1

 10

 100

 1000

 10000

 0 4 8 12 16 20 24 28

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

10 Pages
50 Pages

100 Pages

 1

 10

 100

 1000

 10000

 0 4 8 12 16 20 24 28

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

Average
Best Fit

(b) Broadwell

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

10 Pages
50 Pages

100 Pages

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

C
o
n
te

n
ti
o
n
 F

a
c
to

r

Concurrent Readers

Average
Best Fit

(c) Power8
Fig. 5. Determination of the Contention Factor (γ) on different architectures using the nonlinear least-squares (NLLS) algorithm [22].

 8 Readers
 16 Readers
 32 Readers
 64 Readers

 0

 1

 2

 3

 4

 5

4K 16K 64K 256K 1M 4M

R
e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

Message Size (Bytes)

 1 Reader
 2 Readers
 4 Readers

(a) KNL

 16 Readers
 28 Readers

 0

 1

 2

 3

 4

 5

4K 16K 64K 256K 1M 4M
R

e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

Message Size (Bytes)

 1 Reader
 2 Readers
 4 Readers
 8 Readers

(b) Broadwell

 160 Readers

 0

 2

 4

 6

 8

 10

4K 16K 64K 256K 1M 4M

R
e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

Message Size (Bytes)

 1 Reader
 2 Readers
 4 Readers
 10 Readers
 20 Readers
 40 Readers
 80 Readers

(c) Power8

Fig. 6. CMA Read Throughput (relative to throughput of single reader for a given message size) with different number of concurrent readers
and message sizes. Based on One-to-all communication pattern.

be seen in Figure 5(c) with the Power8 machine as well. In
contrast, no such sudden increase exists in the single-socket
KNL architecture, as shown in Figure 5(a).

Although contention and latency increases with higher
concurrency, the non-linear nature of the contention fac-
tor suggests that there may be a “sweet spot” where the
achieved throughput is maximized. To determine this region,
we compare the throughput obtained with different levels of
concurrency and message sizes in Figure 6. Values shown
here are normalized to the throughput of a single reader (no
contention). As we can see, depending on the architecture
and the message size, a particular degree of concurrency
achieves the maximum throughput.

Assumptions: Our model assumes that time taken for copy-
ing data increases linearly with the message size. Figure 2(a)
shows that this assumption holds true for the message range
considered here (≥ 1KB). The model also does not differen-
tiate between read vs. write bandwidth. Hence, we consider
both read-based and write-based approaches while designing
our algorithms.

III. DESIGNING NATIVE KERNEL-ASSISTED COLLECTIVES

While most modern MPI libraries support point-to-point
operations based on CMA, to the best of our knowledge, no
existing MPI library has support for native CMA based col-
lectives. However, native CMA based collectives can provide
significant advantages over a design based on point-to-point
transfers. Performing a point-to-point operation with CMA
requires the knowledge of the PID and the buffer address of
the source/target process. These information are typically ex-
changed through control packets (RTS/CTS) before the actual
system call to copy the data is issued. For a dense collec-
tive, many such control messages must be transferred, which
adds unnecessary overhead. In our design, each processes
exchanges their PID with other processes on the same node
during initialization. This mapping from local rank to PID is
used to issue the CMA read/write operations. Note that this

step is required for point-to-point operations as well. When a
collective operation is initiated, some of the processes must
exchange their buffer addresses based on the communication
pattern. Since the message size involved in this step is very
small (size of one pointer), shared memory or loopback based
transfers are used. After this step, the processes can issue CMA
read/write operations without further communication with the
source/target process. However, for some algorithms additional
synchronization is required, which is realized through 0-
Byte messages sent through shared memory. In the following
sections, we propose and evaluate different algorithms that
take advantage of the single-copy feature and avoid contention
for both personalized and non-personalized collectives.

IV. PERSONALIZED COLLECTIVES

A. One-to-all (Scatter)
1) Parallel Reads: In Scatter, the root sends one per-

sonalized message to each of the non-root processes, totaling
p−1 messages. The simplest way to achieve this is each non-
root process initiate a read from the root process’s buffer. The
root broadcasts the address of its send buffer to the non-root
processes using shared memory. The non-root processes then
calculate the required offset by multiplying their local rank
with the number of bytes to be received and initiates the read
operation. If the send buffer is different than the receive buffer,
the root copies its own message using memcpy. This step is
not required if MPI IN PLACE is used. Upon completion of
the read, the non-root processes notify the root process and the
operation is completed when the root has received all p − 1
notifications. The total cost is:

Tpar read = T smbcast + α+ ηβ + lγpd
η

s
e+ T smgather

2) Sequential Writes: In this algorithm, the root writes
the data to each non-root process’s memory in a sequential
fashion. This requires p−1 steps but has no contention. Since
the root is no longer idle, the copy operation for its own data
cannot be overlapped with other transfers if MPI IN PLACE
is not used. Also, the order of the intra-node gather and

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4
Throttle = 8

Throttle = 16

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4
Throttle = 7

Throttle = 14

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4

Throttle = 10
Throttle = 20

(c) Power8, 160 Processes
Fig. 7. Performance comparison of different algorithms for Scatter

broadcast is reversed as the root must gather the address of
the receive buffer from each non-root process and notify them
upon completion. The cost is
Tseq write = Tmemcpy +T smgather + p(α+ ηβ+ ldη

s
e)+T smbcast

where Tmemcpy is 0 if MPI IN PLACE is used and ηβ
otherwise.

3) Throttled Reads: In this algorithm, k processes are
allowed to concurrently read from the root process. This
number k is referred to as the “Throttle Factor”. This requires
d pk e steps and the concurrency cost in each step is γk. While
this can be achieved using d pk e − 1 barriers, we reduce the
synchronization cost using the following scheme. Each process
posts a blocking receive from rank−k if rank−k ≤ 0. This
condition is false for the first k processes and they immediately
start copying the data from the root. Once the data has been
copied, each process posts a send to rank + k as long as
rank + k < p. These sends unblock k of the waiting readers
and this process continues until everyone has finished. Note
that the algorithm does not require k to be a divisor of p. The
final gather phase to identify completion is avoided by the root
posting k receives from the processes involved in the last step.
A single acknowledgement from rank p − 1 is not sufficient
since there are k processes performing concurrent reads at the
final step. Assuming the cost of these point-to-point operations
is negligible,

T kthrottled = T smbcast + d
p

k
e(α+ ηβ + lγkd

η

s
e)

Note that the parallel read and the sequential writes algo-
rithms can be considered to be special cases of the throttled
read algorithm with k = p and k = 1 respectively.

4) Performance: Figure 7 shows the performance of
the different algorithms for Scatter on different architectures.
As shown in Figure 7(a), for small messages parallel read
outperforms sequential writes. However, with larger messages,
parallel read performs the worst. This matches with the trends
shown in Figure 6(a), which shows that compared to single
reader, throughput obtained with 64 readers is greater for
small messages but smaller for large messages. The throttled
read algorithm performs worse for small messages due to the
synchronization overhead. This overhead is lower for larger
values of throttle factor as the number of steps is smaller. For
medium to large messages, throttle factors of 4 and 8 performs
the best, which again matches the trends seen in Figure 6(a).

Figure 7(b) shows that the performance difference between
different algorithms is smaller for Broadwell. This matches
with Figure 6(b) which shows that the difference in throughput
for different number of readers is only about 2x. This is

likely due to the lower maximum bandwidth of DDR memory
and higher clock speed, which reduces the impact of lock
contention. Overall, throttle factor of 4 performs the best for
most message sizes on Broadwell.

For Power8, the trends are slightly different as shown in
Figure 7(c). Due to the significantly larger page size, number
of locks required for a given message size is smaller compared
to KNL and Broadwell. Due to the large system bandwidth of
the Power8 system, algorithms with higher concurrency (large
throttle factor) outperform the variants with less concurrency
(small throttle factor). As expected from Figure 6(c), throttle
factor of 10 performs the best by avoiding inter-socket lock
contention.

B. All-to-one (Gather)
In Gather, the root collects p−1 messages from the non-root

processes. The algorithms for Gather are very similar to the
ones considered for Scatter, but with the direction of read/write
operations reversed.

1) Parallel Writes: The root broadcasts the address of
the receive buffer to the non-root processes through shared
memory. The non-root processes then calculates the offset
based on their local rank and writes the message in the
appropriate location. The root determines the completion by
waiting on a shared-memory based gather. Cost:

Tpar write = T smbcast + α+ ηβ + lγpd
η

s
e+ T smgather

2) Sequential Reads: The root gathers the address of
receive buffers from all non-root processes and reads the mes-
sages in a sequential order. A shared-memory based broadcast
is used to notify non-root processes of the completion. Total
cost:
Tseq read = Tmemcpy + T smgather + p(α+ ηβ + ldη

s
e) + T smbcast

Similar to the sequential Scatter algorithm, Tmemcpy = 0 if
MPI IN PLACE is used as the send buffer.

3) Throttled Writes: In this algorithm, k processes are
allowed to concurrently write to the receive buffer of the root
process. A point-to-point message based scheme similar to the
throttled read algorithm for scatter is used to synchronize the
non-root processes. Time taken for this algorithm is same as
the throttled read algorithm as well.

T kthrottled = T smbcast + d
p

k
e(α+ ηβ + lγkd

η

s
e)

4) Performance: As shown in Figure 8, performance trends
for the different algorithms for Gather are very similar to
their Scatter counterparts. Overall, throttle factors of 8 and
4 perform well on KNL and Broadwell while throttle factor
of 10 performs the best on the Power8 architecture.

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Writes
Sequential Read

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4
Throttle = 8

Throttle = 16

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Writes
Sequential Read

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4
Throttle = 7

Throttle = 14

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Writes
Sequential Read

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Throttle = 2
Throttle = 4

Throttle = 10
Throttle = 20

(c) Power8, 160 Processes
Fig. 8. Performance comparison of different algorithms for Gather

C. All-to-all
In Alltoall, each process sends a personalized message to

every other process, totaling p∗(p−1) messages. We consider
the following algorithms for Alltoall:

1) Pairwise: The pairwise algorithm is implemented in two
phases. If MPI IN PLACE is not used, each process copies its
own data from the send buffer to the receive buffer. Then the
processes perform a shared-memory based allgather to collect
the addresses of the source buffer of other processes. The
second phase has p − 1 steps. If p is a power-of-two, in the
ith step, each process reads the message from its peer process
rank⊕i. If p is not a power-of-two, it reads the message from
(rank− i) mod p. Since each process reads from a different
process, there is no lock contention. If a process sends η bytes
to every other process, time taken by this algorithm is:

Tpairwise = T smallgather + (p− 1)(α+ ηβ + ldη
s
e)

2) Bruck’s Algorithm: Bruck’s algorithm [23] requires
dlg pe steps for both power-of-two and non-power-of-two
processes. However, due to the additional memory copying
required, it performs poorly for medium and large messages
where CMA is applicable.

3) Performance: Since there is only one efficient algorithm
for large message Alltoall, we take this opportunity to show
the advantage of native CMA based collectives over a point-to-
point based design. Figure 9 compares three different designs
for the pairwise exchange algorithm - a) shared memory
based (SHMEM), b) point-to-point CMA operations (CMA-
pt2pt), and c) native CMA collective (CMA-coll). Due to
the single-copy design, CMA-pt2pt is significantly better than
the SHMEM design for large messages. CMA-coll avoids the
exchange of control messages (e.g. RTS/CTS) necessary for
the point-to-point operations, resulting in good improvement
for the small and medium messages. For very large messages,
the cost of exchanging control messages is small compared to
the data movement cost and thus both CMA-coll and CMA-
pt2pt show similar performance.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

SHMEM
CMA-pt2pt

CMA-coll

(a) KNL, 64 Processes

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

SHMEM
CMA-pt2pt

CMA-coll

(b) Broadwell, 28 Processes
Fig. 9. Performance comparison of different implementations of the
Pairwise exchange algorithm for Alltoall

V. NON-PERSONALIZED COLLECTIVES

A. All-to-all (Allgather)

In Allgather, each process gathers p − 1 η-byte messages
from other processes. We consider the following algorithms:

1) Ring-Neighbor: In the traditional Ring algorithm, the
processes form a virtual ring and each process receives the
message from process rank−1 and sends it to process rank+
1. This requires p − 1 steps. Since CMA reads are initiated
by the receiver, in this scheme each process must notify its
neighbor when it has completed the previous receive. The same
holds true for CMA writes as well. This algorithm can be
generalized where each process reads from process (rank −
j) mod p. We refer to this algorithm as “Ring-Neighbor-j“.
However, the algorithm is correct only for those values of j
where gcd(p, j) = 1. j = 1 is the regular ring algorithm and
works for any value of p.

2) Ring-Source: An alternative approach is to directly read
the message from the original source. In step i, each process
reads the message directly from the process rank− i. In this
approach the read buffer is always valid and no additional
synchronization is required. It is also contention free unless
multiple processes end up concurrently reading from the same
buffer due to skew. This approach is referred to as “Ring-
Source-Read“ or “Ring-Source-Write“ based on the type of
the CMA operation.

An allgather and a barrier is required to exchange the buffer
addresses and to identify completion. Since each process reads
from a different process, the cost is:
Tring = Tmemcpy+T

sm
allgather+(p−1)(α+ηβ+ldη

s
e)+T intrabarrier

3) Recursive Doubling: Recursive doubling requires lg p
steps for power-of-two processes. In step i, processes that are
at distance i exchange their data along with the data received
in previous steps. Thus, at each step the amount of data
exchanged is iη

p . For non-power-of-two processes, additional
steps are required to exchange the data within the subtree.
Total time of this algorithm:
Trd = Tmemcpy+T

sm
allgather+lg pα+(p−1)(ηβ+ldη

s
e)+T intrabarrier

4) Brucks: Bruck’s algorithm [23] is initialized by each
process copying the input data to the beginning of the output
buffer. In step i, each process copies the data from process
rank+2i and appends it to the output buffer. For power-of-two
processes, blg pc such steps are required. For non-power-of-
two processes, one additional step where each process receives
and appends (p−2blg pc messages is required. Finally, the data
in the output buffer is shifted downwards by rank blocks. This

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Ring-Source-read
Ring-Source-Write

Ring-Neighbor-Read

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Recursive Doubling
Bruck’s Algorithm

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Ring-Source-read
Ring-Source-Write

Ring-Neighbor-1
Ring-Neighbor-15

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Recursive Doubling
Bruck’s Algorithm

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Ring-Source-read
Ring-Source-Write

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Ring-Neighbor-1
Ring-Neighbor-11
Bruck’s Algorithm

(c) Power8, 160 Processes
Fig. 10. Performance comparison of different algorithms for Allgather

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write
Scatter Allgather

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Knomial Read
Knomial Write

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M
L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write
Scatter Allgather

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M
L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Knomial Read
Knomial Write

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Parallel Read
Sequential Write
Scatter Allgather

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Knomial Read
Knomial Write

(c) Power8, 160 Processes
Fig. 11. Performance comparison of different algorithms for Broadcast

final step requires (p−1)ηβ time in the worst case. Total cost:
Tbruck = T smallgather+dlg peα+(p−1)(2ηβ+ ldη

s
e)+T intrabarrier

5) Performance: Figure 10 compares the performance
of different algorithms on different architectures. On KNL
(Figure 10(a)), both Recursive Doubling and Bruck’s perform
well for small messages due to lg p steps compared to p − 1
steps of Ring. However, for large messages, Bruck’s perform
poorly due to the additional memcpy costs while Ring and Re-
cursive Doubling perform similarly as their bandwidth terms
are the same. Direct reads from source performs marginally
better than reading from neighbor due to lower synchronization
overhead.

On Broadwell (Figure 10(b)), the advantage of Recursive
Doubling is lost due to non-power-of-two processes. However,
since number of steps in Bruck’s remains logarithmic and
it performs well with small messages but poorly with large
messages. Interestingly, the Ring algorithms perform better
than recursive doubling, especially for larger messages. This
is because in a Ring, most reads are intra-socket while in
Recursive Doubling, the final and largest messages are inter-
socket. To verify this, we evaluate two variants of the Ring
algorithm. In the first one each process reads from process
rank+1, which makes most transfers intra-socket. In the other
version, each process reads from rank+15, thus making most
of the transfers inter-socket. (The Broadwell node has two
sockets, each with 14 cores.) The Neighbor-1 scheme performs
significantly better than the Neighbor-15 scheme due to lower
number of inter-socket transfers. As shown in Figure 10(c),
similar trends can be observed on Power8.

B. One-to-all (Broadcast)
The algorithms discussed for Scatter in Section IV-A can be

utilized for broadcast as well. However, since all the processes
receive the same message, we can devise new algorithms that
can reduce the contention.

1) Direct Reads/Writes: The Direct Read/Write algorithms
are similar to the parallel read and sequential write algorithms

for Scatter. The costs are:
Tdirect read = T smbcast + α+ ηβ + lγpd

η

s
e+ T smgather

Tdirect write = T smgather + p(α+ ηβ + ldη
s
e) + T smbcast

2) k-nomial: Based on the trends seen in Figure 6, we
know that throttled reads can provide increased performance
for Scatter. The analogous algorithm for broadcast is a k-
nomial tree based broadcast, where up to k readers can read
from the same source in parallel. Unlike Scatter where each
process becomes idle after receiving the message from root,
in this case they continue to send the messages down the tree.
Cost of k-nomial broadcast is:

Tknomial = T smbcast + dlogk pe(α+ ηβ + lγkd
η

s
e)

3) Scatter Allgather: The Scatter-Allgather algorithm for
broadcast was originally proposed by Van-der-Gejin [24]. The
root divides the message into p equal chunks and scatters them
to p− 1 non-root processes. After this step, all processes per-
form an allgather operation on the η

p -byte chunks to complete
the broadcast. In this scheme, the first step where the root
scatters the data suffers from contention but the allgather step
has no contention as there are no concurrent reads from the
same process. An initial allgather step is required to exchange
everyone’s buffer addresses. Total time taken depends on the
algorithms chosen for the Scatter and the Allgather steps.

Tscat−allg = T smallgather + Tscatter(
η

p
) + Tallgather(

η

p
)

4) Performance: We compare the performance of different
Broadcast algorithms in Figure 11. As expected, k-nomial
algorithms perform better than direct read or write algorithms
on all three architectures. For small messages, the overhead of
scatter-allgather is high. However for large messages, scatter
allgather performs the best due to its contention avoidance.
While the step of dividing up the message among all processes
has some contention, the latter steps (allgather) are contention
free. The performance of k-nomial closely matches that of
scatter-allgather on Power8, as shown in Figure 11(c). Due to
the large number of non-power-of-two processes, individual

chunks are not page aligned and incurs some extra overhead.
On the other hand, k-nomial with concurrency of 10 provides
good throughput due to the trends seen in Figure 6.

VI. MODEL VALIDATION
To evaluate the efficacy of our proposed communication

model, we compare the predicted and observed cost for
three different algorithms for broadcast - 1) Direct Read, 2)
Direct Write, and 3) Scatter-Allgather. The Scatter-Allgather is
implemented as a Sequential Write based scatter followed by a
Ring-based allgather. We use the values shown in Table IV to
calculate the predicted cost. As we can see from Figure 12, the
observed performance closely matches the predicted cost.
By using Scatter-Allgather, we indirectly validate the models
for Scatter and Allgather as well.

10
1

10
2

10
3

10
4

10
5

10
6

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Actual 1
Actual 2
Actual 3

Modeled 1
Modeled 2
Modeled 3

(a) KNL, 64 Processes

10
1

10
2

10
3

10
4

10
5

10
6

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Actual 1
Actual 2
Actual 3

Modeled 1
Modeled 2
Modeled 3

(b) Broadwell, 28 Processes
Fig. 12. Predicted vs. Observed performance of MPI Bcast with
different algorithms (1 = Direct Read, 2= Direct Write, 3 = Scatter
Allgather) on KNL and Broadwell architectures. Observed results
(“Actual”) are shown as points and predicted costs (“Modeled”) are
shown as lines.

VII. EXPERIMENTAL EVALUATION
In this section we compare the performance of our proposed

designs against the existing algorithms in MVAPICH2 as
well as other state-of-the-art MPI libraries. Table V lists the
hardware specification for the three different architectures
used. Our design selects the appropriate CMA algorithm for
a given collective based on the architecture and message size
(referred to as “Tuned CMA”). This was compared against the
latest versions of the MPI libraries - MVAPICH2-2.3a, Intel
MPI 2017, and Open MPI 2.1.0. All libraries were configured
with CMA support enabled. Intel MPI was not available on
the OpenPOWER system. Hence, some of the results from this
cluster are omitted to save space.

TABLE V. Hardware specification of the clusters used

Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER-8
Processor Model E5 v2680 KNL 7250 PPC64LE
Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz
No. of Sockets 2 1 2
Cores Per Socket 14 68 10
Threads per Core 1 4 10
Mesh Config NUMA Cache NUMA
RAM (DDR) 128GB 96GB 256GB
MCDRAM - 16GB -
Interconnect IB-EDR(100G) Omni-Path(100G) IB-EDR(100G)

A. Summary of Results
In this section we present a high-level summary of the

results. Numbers reported here are obtained from a single
node with full subscription. Table VI compares the maximum

speedup obtained with the proposed designs compared to other
state-of-the-art libraries on three different architectures. As we
can see, the proposed designs can reduce the latency of
personalized collectives such as Scatter and Gather by
up to 50 times. It also improves performance of non-
personalized collectives such as Broadcast and Allgather
by up to 4 times depending on the architecture. We also
reduce the latency of Alltoall by up to 5 times.

Since kernel-assisted copy techniques are geared towards
large messages, we also compare the speedups obtained for
the largest message size available for a given collective on a
given architecture (≥4MB for KNL and Broadwell, ≥2MB for
Power8). As shown in Table VII, collectives such as Scatter
and Gather continue to show factors of improvement for the
largest messages. Low contention collectives such as Alltoall
and Allgather show up to 10-50% improvement compared to
the state-of-the-art libraries. This reduction is consistent with
the fact that for these collectives, the dominant factor for very
large messages is the data movement cost and savings from
reduced overhead is relatively small.

B. MPI Scatter
Figure 13 compares the performance of the proposed

contention-aware designs for MPI Scatter against existing
designs. As shown in Figure 13(a), the proposed design is
up to 5 times faster than the existing MVAPICH2 design and
up to 4 times faster than other state-of-the art MPI libraries on
KNL with 64 processes. On Broadwell with 28 processes, we
see improvements of up to 5 times compared to the best state-
of-the-art implementation. For very large messages (>1MB),
performance improvement is smaller in Broadwell compared
to KNL. This matches with the trends in Figure 6, which shows
that with properly tuned level of concurrency KNL can deliver
higher relative throughput than Broadwell. We also see large
improvements compared to the default designs in the Power8
architecture, as shown in Figure 13(c). Due to the large process
count, naive algorithms suffer from significant contention.

C. MPI Gather
The performance trends observed for Gather is similar to

scatter, as illustrated in Figure 14(a). On KNL, we observe
5-13 times improvement compared to the existing designs
depending on the message size and 2-5 times improvement
for very large messages (8MB). Similar improvements are
obtained on Broadwell and Power8 as well, as shown in
Figure 14(b) and Figure 14(c). They also show that CMA
can be beneficial for messages as small as 1KB.

D. MPI Alltoall
As discussed in Section IV-C, the pairwise exchange is

contention-free and optimal for large message alltoall. Thus,
while our design performs significantly better than a Shared-
memory based design, it does not does not have a significant
bandwidth advantage over an implementation based on point-
to-point Kernel-based transfers. However, since a native col-
lective design avoids the need for RTS/CTS packets, we can
expect some improvement for small to medium messages. This
matches with the trends shown in Figure 15, which shows 2-5

TABLE VI. Maximum speedup obtained with proposed designs (“Tuned CMA”) compared to state-of-the art MPI libraries

KNL Broadwell Power8

MVAPICH2 Intel MPI Open MPI MVAPICH2 Intel MPI Open MPI MVAPICH2 Open MPI

Bcast 2.23 1.09 3.74 1.46 1.84 3.57 4.71 5.58
Scatter 5.08 4.14 4.81 2.88 5.53 4.03 10.4 53.3
Gather 13.7 2.51 5.46 4.97 4.41 4.54 39.9 38.8
Allgather 2.07 1.55 1.95 3.70 3.22 7.09 2.51 2.52
Alltoall 2.99 1.88 2.49 4.82 4.62 2.58 3.30 5.41

TABLE VII. Speedup obtained for the largest message size evaluated compared to state-of-the art MPI libraries

KNL Broadwell Power8

MVAPICH2 Intel MPI Open MPI MVAPICH2 Intel MPI Open MPI MVAPICH2 Open MPI

Bcast 1.52 1.09 3.74 1.18 1.20 1.86 2.14 2.02
Scatter 5.08 3.87 2.37 1.87 2.04 4.03 13.8 35.6
Gather 4.99 2.24 2.23 3.71 4.35 3.80 8.86 29.8
Allgather 1.41 1.31 1.65 1.41 1.23 1.78 1.25 1.24
Alltoall 1.18 1.10 1.07 1.33 1.14 1.11 1.07 1.06

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Open MPI 2.1.0

Tuned CMA

(c) Power8, 160 Processes
Fig. 13. Performance comparison of MPI Scatter with proposed designs on different architectures

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(b) Broadwell, 28 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Open MPI 2.1.0

Tuned CMA

(c) Power8, 160 Processes
Fig. 14. Performance comparison of MPI Gather with proposed designs on different architectures

times improvement over existing libraries for small to medium
messages. For very large messages, time to copy the messages
become the dominating factor and the improvement is reduced
to 5-15%.

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(b) Broadwell, 28 Processes
Fig. 15. Performance comparison of MPI Alltoall

E. MPI Allgather
Figure 16 shows the performance of the proposed Allgather

design. As shown in Figure 16(a), the native CMA based
design performs 1.5-2 times better than other state-of-the art
libraries and shows benefit till the largest message sizes. Due

to the intra- and inter-socket awareness, our proposed designs
perform up to 3-7 times faster on Broadwell and up to 2.5
times on Power8.

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) KNL, 64 Processes

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(b) Broadwell, 28 Processes
Fig. 16. Performance comparison of MPI Allgather

F. MPI Bcast
Figures 18(a) and 18(b) show the latency of MPI Bcast

on Broadwell and Power8 systems. On Broadwell, the CMA
based design does not show benefit for messages ≤2MB. This
is because a shared memory based broadcast implementation
requires p copies while a CMA/kernel-assisted implementation

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M 4M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) 2 Nodes, 128 Processes

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(b) 4 Nodes, 256 Processes

 100

 1000

 10000

 100000

 1x10
6

1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(c) 8 Nodes, 512 Processes
Fig. 17. Latency comparison of MPI Gather on different number of KNL nodes

requires p− 1 copies. This minor difference in the number of
copies is overshadowed by the contention in CMA. Hence, on
Broadwell, shared memory based broadcast performs better
for message smaller than ≤2MB and CMA is beneficial for
larger messages. While we show the entire message range here
for comparison, we use the collective tuning framework of
MVAPICH2 to automatically select either CMA or shared
memory based designs to provide the best performance
for a given message size and process count. On Power8, our
proposed design (k-nomial read) is able to take advantage of
the higher aggregate throughput and perform better than exist-
ing designs for message sizes ≥32KB. Overall, the proposed
designs are able to achieve up to 3-4 times reduction in latency
in the large message range.

10
0

10
1

10
2

10
3

10
4

10
5

1K 4K 16K 64K256K 1M 4M 16M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Intel MPI 2017

Open MPI 2.1.0
Tuned CMA

(a) Broadwell, 28 Processes

10
1

10
2

10
3

10
4

10
5

1K 4K 16K 64K 256K 1M 4M

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-2.3a
Open MPI 2.1.0

Tuned CMA

(b) Power8, 160 Processes
Fig. 18. Performance comparison of MPI Bcast

G. Multi-Node Scalability
While the proposed designs focus on improving the intra-

node performance, these improvements are applicable to multi-
node jobs as well. Figure 17 compares the performance of
the proposed designs with MPI Gather against state-of-the art
libraries on 2, 4, and 8 KNL nodes with 128, 256, and 512
processes respectively. As we can see, these configurations
show up to 2x, 3x, and 5x improvement respectively compared
to the best performing state-of-the-art library. This counter
intuitive increase in improvement with increasing node count
is due to the two-level Gather design. To take advantage of
the improved intra-node performance, we design a two-level
Gather where the local rank 0 on each node gathers the data
from its same-node peers, followed by a inter-node gather by
the global rank 0. Most modern MPI libraries have been using
single-level Gather algorithms for large messages due to poor
performance of intra-node Gather designs. However, with the
proposed improvements, it is possible to design new hier-
archical algorithms that can deliver better performance
at large scale. More advanced designs such as pipelined
two-level gather can be used to overlap inter- and intra-
node transfers to further improve the performance. Similar
performance improvements were observed with MPI Scatter.

VIII. RELATED WORK

Benefits of kernel-assisted single-copy transfers have been
shown in [25–27]. LiMIC [17] and KNEM [18] are two kernel
module based solutions that support single-copy transfers.
SMARTMAP [28] and XPMEM [29] are two solutions spe-
cific to Cray and SGI that provide similar capabilities. CMA
was introduced in Linux kernel 3.2 to address the limitations
of LiMIC and KNEM and provide a portable way for any
MPI library to use single-copy transfers [30]. An evaluation
of CMA in MPI libraries can be found in [19].

Collective performance of MPI on shared-memory systems
has been a popular topic among researchers [11, 13–16,
31, 32]. However, while many of the algorithms discussed in
this work are well-known, their performance and applicability
in context of kernel-assisted designs on modern many-core
architectures are not. In this work, we develop an analytical
model to predict the cost of different algorithms with kernel-
assisted transfers. We implement and evaluate the known
algorithms on different architectures and propose new algo-
rithms where required. Ma et. al. proposed kernel-assisted [10]
and hierarchical designs [33] for Broadcast and Allgather
using KNEM. However, their work do not consider the lock
contention. In this paper, we show that this is a significant
issue with high concurrency and requires careful designs to
extract the best performance. For experimental evaluation, we
compare our designs against the latest OpenMPI collective
module, which to the best of our knowledge incorporates their
proposed designs.

IX. CONCLUSION AND FUTURE WORK

In this paper, we identified a major contention present
in kernel-assisted single-copy techniques and proposed an
analytical model to quantify this. Based on this model, we de-
signed contention-aware, kernel-assisted collective algorithms
for personalized and non-personalized One-to-all, All-to-one,
and All-to-all communication. We also validated our model
and demonstrated that the proposed model is able to accurately
predict the actual performance obtained on modern HPC
systems. Experimental evaluation on different architectures
like Xeon, KNL, and OpenPOWER showed that the proposed
designs are able to outperform the state-of-the-art solutions
available in multiple MPI libraries like IntelMPI, OpenMPI
and MVAPICH2 by up to 50x for personalized and up to 5x
for non-personalized collectives. Going forward, we plan to
extend these designs to other collectives and design efficient
multi-level collectives that overlap intra-node and inter-node
communication to achieve the best performance at scale.

ACKNOWLEDGMENTS

This research is supported in part by National Science Foun-
dation grants #CNS-1419123, #CNS-1513120, #ACI-1450440
and #CCF-1565414.

REFERENCES

[1] “US National Science Foundation,” https://www.nsf.gov/.
[2] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,

A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson et al., “XSEDE: Accelerating Scientific Discov-
ery,” Computing in Science & Engineering, vol. 16, no. 5,
pp. 62–74, 2014.

[3] “XDMoD: Comprehensive HPC System Management
Tool,” https://xdmod.ccr.buffalo.edu/.

[4] “MPI-3 Standard Document,” http://www.mpi-forum.
org/docs/mpi-3.0/mpi30-report.pdf.

[5] The Open MPI Development Team, “Open MPI : Open
Source High Performance Computing,” http://www.open-
mpi.org.

[6] Intel Coporation, “Intel MPI Library,”
http://software.intel.com/en-us/intel-mpi-library/.

[7] MVAPICH2: MPI over InfiniBand, 10GigE/iWARP and
RoCE, https://mvapich.cse.ohio-state.edu/.

[8] InfiniBand Trade Association,
http://www.infinibandta.org/.

[9] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz,
T. Lovett, T. Rimmer, K. D. Underwood, and R. C.
Zak, “Intel R© Omni-path Architecture: Enabling Scal-
able, High Performance Fabrics,” in High-Performance
Interconnects (HOTI), 2015 IEEE 23rd Annual Sympo-
sium on. IEEE, 2015, pp. 1–9.

[10] T. Ma, G. Bosilca, A. Bouteiller, B. Goglin, J. M.
Squyres, and J. J. Dongarra, “Kernel Assisted Collective
Intra-node MPI Communication among Multi-core and
Many-core CPUs,” in Parallel Processing (ICPP), 2011
International Conference on. IEEE, 2011, pp. 532–541.

[11] A. R. Mamidala, R. Kumar, D. De, and D. K. Panda,
“MPI Collectives on Modern Multicore Clusters: Per-
formance Optimizations and Communication Character-
istics,” in Cluster Computing and the Grid, 2008. CC-
GRID’08. 8th IEEE International Symposium on. IEEE,
2008, pp. 130–137.

[12] R. L. Graham and G. Shipman, “MPI Support for Multi-
core Architectures: Optimized Shared Memory Collec-
tives,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer,
2008, pp. 130–140.

[13] S. Sistare, R. Vaart, and E. Loh, “Optimization of MPI
Collectives on Clusters of Large-scale SMP’s,” in Super-
computing, ACM/IEEE 1999 Conference. IEEE, 1999,
pp. 23–23.

[14] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell,
C. C. Erway, J. E. Moreira, B. Steinmacher-Burow, and
Y. Zheng, “Optimization of MPI Collective Communi-
cation on BlueGene/L systems,” in Proceedings of the

19th annual international conference on Supercomput-
ing. ACM, 2005, pp. 253–262.

[15] H. Zhu, D. Goodell, W. Gropp, and R. Thakur, “Hierar-
chical Collectives in MPICH2,” in European Parallel Vir-
tual Machine/Message Passing Interface Users’ Group
Meeting. Springer, 2009, pp. 325–326.

[16] S. Li, T. Hoefler, and M. Snir, “NUMA-aware Shared-
memory Collective Communication for MPI,” in Pro-
ceedings of the 22nd international symposium on High-
performance parallel and distributed computing. ACM,
2013, pp. 85–96.

[17] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “LiMIC:
Support for High-Performance MPI Intra-Node Commu-
nication on Linux Cluster,” in Parallel Processing, 2005.
ICPP 2005. International Conference on. IEEE, 2005,
pp. 184–191.

[18] B. Goglin and S. Moreaud, “KNEM: A Generic and
Scalable Kernel-Assisted Intra-Node MPI Communica-
tion Framework,” Journal of Parallel and Distributed
Computing, vol. 73, no. 2, pp. 176–188, 2013.

[19] J. Vienne, “Benefits of Cross Memory Attach for MPI
libraries on HPC Clusters,” in Proceedings of the 2014
Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM, 2014, p. 33.

[20] T. Bird, “Measuring Function Duration with Ftrace,” in
Proceedings of the Linux Symposium, 2009, pp. 47–54.

[21] R. Thakur, R. Rabenseifner, and W. Gropp, “Opti-
mization of Collective Communication Operations in
MPICH,” The International Journal of High Performance
Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[22] D. W. Marquardt, “An Algorithm for Least-squares Esti-
mation of Nonlinear Parameters,” Journal of the society
for Industrial and Applied Mathematics, vol. 11, no. 2,
pp. 431–441, 1963.

[23] J. Bruck, D. Dolev, C.-T. Ho, M.-C. Roşu, and R. Strong,
“Efficient Message Passing Interface (MPI) for Parallel
Computing on Clusters of Workstations,” in Proceedings
of the seventh annual ACM symposium on Parallel algo-
rithms and architectures. ACM, 1995, pp. 64–73.

[24] E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A.
Van De Geijn, “On Optimizing Collective Communica-
tion,” in Cluster Computing, 2004 IEEE International
Conference on. IEEE, 2004, pp. 145–155.

[25] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “De-
signing an Efficient Kernel-level and User-level Hybrid
Approach for MPI Intra-node Communication on Multi-
core Systems,” in Parallel Processing, 2008. ICPP’08.
37th International Conference on. IEEE, 2008, pp. 222–
229.

[26] S. Moreaud, B. Goglin, D. Goodell, and R. Namyst, “Op-
timizing MPI Communication within Large Multicore
Nodes with Kernel Assistance,” in Workshop on Com-
munication Architecture for Clusters, held in conjunction
with IPDPS 2010, 2010, pp. 7–p.

[27] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and
S. Moreaud, “Cache-efficient, Intranode, Large-message

MPI Communication with MPICH2-Nemesis,” in Paral-
lel Processing, 2009. ICPP’09. International Conference
on. IEEE, 2009, pp. 462–469.

[28] R. Brightwell and K. Pedretti, “Optimizing Multi-core
MPI Collectives with SMARTMAP,” in Parallel Process-
ing Workshops, 2009. ICPPW’09. International Confer-
ence on. IEEE, 2009, pp. 370–377.

[29] M. Woodacre, D. Robb, D. Roe, and K. Feind, “The SGI
AltixTM 3000 Global Shared Memory Architecture,”
Silicon Graphics, Inc.(2003), 2005.

[30] C. Yeoh, “Cross Memory Attach,” https://lwn.net/
Articles/405284/.

[31] R. L. Graham and G. Shipman, “MPI Support for Multi-

core Architectures: Optimized Shared Memory Collec-
tives,” Lecture Notes in Computer Science, vol. 5205, p.
130, 2008.

[32] B. Tu, M. Zou, J. Zhan, X. Zhao, and J. Fan, “Multi-
core Aware Optimization for MPI Collectives,” in Cluster
Computing, 2008 IEEE International Conference on.
IEEE, 2008, pp. 322–325.

[33] T. Ma, G. Bosilca, A. Bouteiller, and J. Dongarra, “Hi-
erKNEM: an Adaptive Framework for Kernel-assisted
and Topology-aware Collective Communications on
Many-core Clusters,” in Parallel & Distributed Process-
ing Symposium (IPDPS), 2012 IEEE 26th International.
IEEE, 2012, pp. 970–982.

