
PMI Extensions for Scalable MPI Startup ∗

S. Chakraborty
Dept of Computer Science

and Engineering
The Ohio State University

chakraborty.52@osu.edu

H. Subramoni
Dept of Computer Science

and Engineering
The Ohio State University

subramoni.1@osu.edu

J. Perkins
Dept of Computer Science

and Engineering
The Ohio State University
perkinjo@cse.ohio-

state.edu
A. Moody

Lawrence Livermore National
Laboratory

Livermore, California
moody20@llnl.gov

M. Arnold
Dept of Computer Science

and Engineering
The Ohio State University
arnoldm@cse.ohio-

state.edu

D. K. Panda
Dept of Computer Science

and Engineering
The Ohio State University

panda@cse.ohio-
state.edu

ABSTRACT
An efficient implementation of the Process Management Interface
(PMI) is crucial to enable a scalable startup of MPI jobs. We pro-
pose three extensions to the PMI specification: a ring exchange
collective, a broadcast hint to Put, and an enhanced Get. We design
and evaluate several PMI implementations that reduce startup costs
from scaling as O(P) to O(k), where k is the number of keys read
by the processes on each node and P is the number of processes.
Our experimental evaluations show these extensions can speed up
launch time of MPI jobs by 33% at 8,192 cores.

Keywords
PMI-2, SLURM, Job Launch, MPI, InfiniBand

1. INTRODUCTION
Fast, scalable startup of MPI jobs is important for numerous rea-

sons. For example, during application development and debugging,
it is often necessary to start and restart a job multiple times. Re-
ducing startup costs from minutes to seconds cumulatively saves
developers hours of time. While testing a system or while regres-
sion testing an application, many large-scale, quick-running MPI
jobs must be run in succession. In this case, MPI startup becomes
the dominant cost so that improving startup dramatically speeds up
testing time. As a final example, fast startup is necessary to main-
tain machine efficiency when using fast checkpoint/restart meth-
ods [1].

A major bottleneck in starting large MPI jobs is the cost asso-
ciated with exchanging information within the MPI library that
is needed to initialize high-performance communication channels
between processes in the job. For portability, most job launch-
ers provide a common “out-of-band” communication infrastructure
known as the Process Management Interface (PMI) [2]. Current

∗This research is supported in part by National Science Founda-
tion grants #OCI-1148371, #CCF-1213084, #CNS-1347189; and a
grant from Cray.
Prepared by LLNL under Contract DE-AC52-07NA27344.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642780.

implementations of PMI scale poorly on today’s largest systems
– a problem that will only be exacerbated on next generation ex-
aflop systems that are expected to have O(100,000) to O(1,000,000)
hosts [3].

PMI defines a portable interface that MPI libraries use to initial-
ize communication between the processes of the parallel job. PMI
is typically implemented as a client-server library with the process
manager acting as the server and the MPI library taking the role
of the client. The core functionality of PMI is to provide a global
key-value store (KVS) that the MPI processes use to exchange in-
formation as key-value pairs. The basic operations in PMI are
PMI2_KVS_Put, PMI2_KVS_Get, and PMI2_KVS_Fence, which
we refer to as Put, Get, and Fence, respectively. Put adds a new
key-value pair to the store, and Get retrieves a value given a key.
Fence is a synchronizing collective across all processes in the job.
It ensures that any Put made prior to the Fence is visible to any
process via a Get after the Fence.

Existing PMI implementations have no advance knowledge about
which keys are needed by which processes; as a result they broad-
cast each key to every PMI server. Since each MPI process of-
ten Puts one or more keys, such implementations require time and
memory in a manner that requires a linear increase in the number of
MPI processes and will therefore scale poorly on large systems. An
alternative is to implement PMI as a distributed key-value store in
which each server stores a subset of keys and then sends messages
to exchange values with other servers during each Get operation.
This design, however, scales poorly for any key that must be read
by every process.

To alleviate this problem, we propose three extensions to the PMI
specification: a ring exchange collective, a broadcast hint to Put,
and an enhanced Get. The first two enable PMI implementations to
avoid algorithms with linear terms and the third eliminates unnec-
essary synchronization. By employing these extensions, we then
implement several PMI implementations which reduce MPI startup
costs from scaling as O(P) to scale as low as O(k), where k is the
number of keys read by the processes on each node and P is the
number of processes in the job. At large scale when k � P , these
extensions significantly reduce MPI startup time.

2. MOTIVATION AND CONTRIBUTIONS
We integrate support for PMI-2 in the widely used MVAPICH2

MPI library [4] and profile the time taken during various phases
of job startup. Figure 1 shows a breakdown of the time taken dur-
ing MPI_Init when launching a simple MPI program for differ-
ent job sizes on the Stampede supercomputing system at the Texas
Advanced Computing Center (TACC). We show the time spent ex-

 0

 0.5

 1

 1.5

 2

 2.5

32 64 128 256 512 1K 2K 4K 8K

T
im

e
 T

a
k
e
n
 (

S
e
c
o
n
d
s
)

Number of Processes

PMI Exchange
Shared Memory
Other

Figure 1: Breakdown of time spent in MVAPICH2 at startup

ecuting a PMI exchange, the time spent to set up shared memory
communication, and the time spent in other initialization work.

During the PMI exchange, each MPI process writes its network
address via a single Put. The processes then execute a Fence, and
each process then issues multiple Get operations to lookup the ad-
dresses of all processes. We observe that as the job size increases,
the PMI Put-Fence-Get sequence takes an increasingly larger por-
tion of the total time and consumes the majority at larger scales.
While this particular example uses MVAPICH2, it is applicable to
other high-performance MPI libraries.

To analyze this cost, we profile the time taken by the individual
PMI operations at various job sizes. Figure 2 indicates the amount
of time spent by the MPI library in Put, Fence, and Get (represented
by “PUT”, “FENCE with PUT”, and “GET”, respectively) for dif-
ferent numbers of processes on Stampede. It is obvious that the
Fence step is the most time consuming part of the PMI exchange.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

64 256 1K 4K 16K

T
im

e
 T

a
k
e

n
 (

S
e

c
o

n
d

s
)

Number of Processes

FENCE with PUT
FENCE with 50% PUT

FENCE w/o PUT
PUT
GET

Figure 2: Time taken by different PMI-2 operations

To gain further insights into this performance trend, we explore
SLURM’s PMI-2 implementation of these operations. SLURM [5]
(Simple Linux Utility for Resource Management) is a popular pro-
cess manager used by many small and large clusters. SLURM
has a main controller daemon slurmctld running on the controller
node and another daemon slurmd running on each of the compute
nodes. The slurmctld is responsible for scheduling, allocating, and
managing jobs while the slurmd launches and cleans up processes,
redirects I/O, etc. While launching a job, slurmctld instructs the
slurmds on the allocated nodes to set up environment variables and
launch the processes. The slurmds participating in a job set up a hi-
erarchical k-nomial tree with an srun process as the root as shown
in Figure 3.

In SLURM’s PMI-2 implementation, the Put and Get operations
are local and do not present a bottleneck as seen in Figure 2. How-
ever, the Fence operation synchronizes all processes through a bar-
rier followed by an allgather of key-value pairs implemented as a
gather and a broadcast over the SLURM tree. Note that this data
distribution happens irrespective of whether the destination process
performs a Get for the data or not. To further understand the over-

Head Node

Compute Node Compute Node Compute Node

Compute Node Compute Node

SRUN

SLURMD

Application
Process

Compute Node

Puts (local)

Fence (global
sync + data)

Gets (local)

Figure 3: Hierarchical communication scheme in SLURM

heads in the Fence operation, we profile the time taken by Fence
without a preceding Put (represented by “FENCE w/o PUT”) and
with a single 16-byte Put from processes with odd rank (repre-
sented by “FENCE with 50% PUT”). It is clear that the data move-
ment is the dominant cost factor of the Fence operation.

The existing design for Fence where all data is distributed to all
processes works well if most of the processes actually require most
keys. However, this strategy is sub-optimal for applications that use
sparse communication patterns. For example, MVAPICH2 is able
to create a ring structure after exchanging a very small number of
keys and can use that ring to exchange the rest of the information.
In such cases, the overhead of copying a large amount of data to un-
interested processes is high. Unfortunately, the current PMI-2 spec-
ification does not provide an option for the application to specify
whether a particular key is required by a majority of the processes
or not. Thus, PMI applications in which each key is only read by a
small number of processes are penalized by the allgather exchange
in Fence and may instead benefit from using “on-demand” Get and
Put operations.

These issues lead us to the following broad problem statement
— Can we enhance the existing PMI-2 design and specification
to improve the startup time of MPI-based parallel applications
on large supercomputing systems?

In this paper, we address this challenge. We propose efficient de-
signs for non-local Put and Get operations in PMI. We implement
these designs in the SLURM process manager, and evaluate their
performance. The results of our experimental evaluation show that
these new designs significantly improve the launch time of MPI
jobs, which leads us to propose extensions to the PMI-2 specifi-
cation so that additional information can be passed to the library,
which will enable more scalable PMI implementations.

3. NON-LOCAL PUT AND GET
To eliminate the allgather from the Fence operation, the Get and

Put operations must be able to exchange data via remote operations.
In this section we describe and evaluate a few different designs for
exchange of information while maintaining consistency. Figure 4
depicts the high level overview of the different PMI implementation
designs.

3.1 Design 1: Hierarchical Tree
In this scheme we utilize SLURM’s hierarchical tree structure

for data movement. During a Put, the process sends the key-value
pair to the local slurmd. The slurmd propagates the pair to its parent
slurmd until it reaches the root srun. All of the involved slurmds
(i.e. the ancestors of the originating slurmd) also cache this key
value pair locally.

The Get method is similar. When a slurmd handles a Get request,
it first checks its local cache for that key and immediately responds

Job Launcher

PUT FENCEGET

Barrier

Fetch
Data from

Local /
Parent

SLURMD

Propagate
Puts to
Parent

SLURMD

(a) Hierarchical Tree

Job Launcher

PUT FENCEGET

Barrier

Fetch
Data from

Local /
Remote
SLURMD

Propagate
Puts to
Remote
SLURMD

(b) Distributed Key-Value Store

Job Launcher

PUT FENCEGET

Flush
Non-
Local
Data

Fetch Data
from

Local /
Remote
SLURMD

Puts Data
in Local

SLURMD

(c) Direct Access from Source
Figure 4: Responsibilities of PMI-2 functions in different designs

if found. If the key is not found, it forwards the request to its parent
slurmd/srun. The request is propagated up the tree until it reaches
a process that has the key, at which point, a reply with the value is
sent directly back to the originating slurmd. The slurmd can then
send the response to the requesting local process.

To improve the Get latency, each slurmd appends its hostname
to the forwarded request and the responding slurmd/srun sends the
reply to all of them in parallel. Figure 5 shows how the request and
response messages for Get and Put propagate through the tree.

Figure 4(a) depicts the functions of Put, Get, and Fence under
this design. The major benefit of this approach is that all data trans-
fers happen over existing connections between slurmds. Due to the
lack of connection setup and tear-down overhead, this design ex-
hibits low latency if the key is cached by a close ancestor.

However, the tree based approach suffers from two major bot-
tlenecks. The number of messages exchanged grows quickly as
number of Puts and Gets increase. Also, all of the key-value pair
go through the root srun at least once, which scales linearly with
the total number of keys.

Put(s)

Put Step #2:
Propagate Put(s)
to Parent (SRUN)

Get(s)

Put Step #1:
Propagate

Put(s) to Parent

Get Step #2:
Propagate

Get to
Parent

(SRUN)

Put Step #0:
Put(s) to Local

SLURMD

Get Step #0:
Send Get Request
to Local SLURMD

Get Step #1:
Propagate

Get to
Parent

Hit?

Fulfill
Application

Request

Yes No

Hit?

Fulfill
SLURMD
Request

Yes No

Hit?

No

Yes

 Fulfill SLURMD

Request

Directly
Fulfill
Source
SLURMD
Request

Queue Request
Awaiting Future

Put(s) to
Propagate Up

Puts

Gets

Direct
Response

Figure 5: Proposed hierarchical tree-based scheme

3.2 Design 2: Distributed Key-Value Store
In this design all nodes can act as the primary source for a subset

of the keys. Each key is hashed to a unique host id. In a Put opera-
tion, the local slurmd hashes the key to identify the owner node and
sends the key-value pair to that node. For Get requests, the slurmd
checks the local cache first and sends a request to the owner node in
case of a miss. Only two message exchanges are required for a Put
and a Get in this approach, as shown in Figure 6. Compared to the

tree-based design which potentially requires O(logN) exchanges
for each Get or Put operation, where N is the number of nodes, the
distributed key-value store can provide better latency. The down-
side is that each Put or Get may need to create a new connection,
whereas existing connections are reused in the tree-based design.

Put(s)

Get(s)

Put Step #0:
Put(s) to Local

SLURMD

Get Step #0:
Send Get
Request
to Local
SLURMD

Hit?

Fulfill
Application

Request

Yes No

Hit?
Generate

Target
using Hash

Send to
Target

Generated
by Hash

Retrieve from
Destination
Generated

by Hash

No

Yes

Fulfill
SLURMD
Request

Gets

Puts Queue Request
Awaiting Future
Put(s) to Arrive

SLURMD

Figure 6: Proposed distributed key-value store based scheme
For this scheme to work, all nodes need to be assigned a unique

node id and all processes must know how to map a node id to a
hostname in order to send a message. Since the process manager
already knows this mapping, it can pass this information to the
processes through PMI-2 Job Attributes or environment variables.
The functions of Put, Get, and Fence operations in this scheme are
shown in Figure 4(b).

3.3 Design 3: Direct Access from Source
In many cases the process issuing Get knows the rank of the pro-

cess that executed the corresponding Put. In these cases, it might
be beneficial to bypass the hierarchical structure or the distributed
key-value store and directly access the key from the source. The
PMI-2 standard includes an optional parameter in Get for the caller
to provide the source rank, but current implementations ignore this.
To look up the hostname from the process rank, the PMI library
must have the process mapping available.

Figure 4(c) depicts the changes made to the PMI functions to
effect this change. In this approach the transfer can be orchestrated
with just a single message exchange.

3.4 Maintaining Consistency
The PMI-2 specification mandates that each Put executed before

a Fence must be visible to a Get after the Fence. Also, with multiple
Puts and Fences, the latest value for the key must be returned to the
Get. In the existing design where Fence also propagates the data,

this is easily achieved. To ensure consistency in the new design,
each slurmd maintains a global sequence number which is incre-
mented each time Fence is called. We also introduced a sequence
number associated with each key-value pair which reflects the se-
quence number when it was put into the cache. While serving the
request for a non-local key, we compare the key’s sequence id with
the global sequence number to check for staleness. If the value is
not fresh, slurmd purges the entry from the cache, treats it like a
miss, and forwards the request to the appropriate owner which can
respond with the updated value.

If the PMI application does not perform multiple Put operations
on the same key, the Fence operation can be completely omitted.
However, in this scenario Get operations can be performed before
the corresponding Puts. This can be solved by two alternatives:
polling and callback. With polling, the requesting slurmd peri-
odically polls the remote host until the Put happens and the re-
mote process responds or a timeout occurs. Clearly this approach
would generate a lot of redundant network activity and does not
give the lowest latency possible. In the callback approach, the pri-
mary source (srun in the tree-based design, hash based owner in the
DKVS design, and the source in the direct access design) maintains
a list of pending requests that could not be served. Whenever a Put
happens, it scans the list for pending requests for the same key and
dispatches appropriate responses. This method does not generate
any additional network traffic and the requests are satisfied as early
as possible.

The callback approach is applied at the node level as well to pre-
vent multiple processes sending out redundant messages requesting
the same key. A queue is maintained for each outstanding request;
if another process requests for the same key before the response
has been recieved, the local rank of the process is recorded in the
queue. When the response from the remote host arrives, the as-
sociated queue is processed and the waiting processes are served.

4. PROPOSED PMI-2 EXTENSIONS
In the following sections, we propose three extensions to the PMI

standard that would allow PMI implementations to support MPI
libraries in a more scalable fashion.

4.1 New Ring Exchange Collective
First, we propose the addition of a new “ring exchange” opera-

tion. This routine is collective across all processes like Fence and it
distributes data amongst processes in a shift pattern. The prototype
for the proposed method is:

int PMI2_Ring(
const char value[],
int* size,
int* rank,
char left[],
char right[]

);

Each process enters its input data in the value parameter. As
output, a process acquires the number of processes in the ring in
size, and it acquires its rank within the ring in rank. The rank
of a process within the ring may be different from its global MPI
rank, i.e., the rank returned by PMI2_Init. This feature is criti-
cal to enable efficient implementations. Also as output, the calling
process receives copies of the data input by its neighbor processes
in the ring. The left and the right buffers hold the values en-
tered by the two neighbor processes of the caller. String buffers
are NULL-terminated and they are limited to a maximum length of
PMI2_MAX_VALLEN bytes defined by the implementation.

Given such a function, most MPI libraries can interconnect a
group of processes after executing a single PMI2_Ring call. Each
process can enter its network address as input and receive the net-
work addresses of its left and right neighbors as output. With this
information, one can then implement numerous collectives such as
barrier, broadcast, and allreduce in O(logP) time where P is the
size of the ring [6]. Additionally, we believe this function can be
implemented efficiently in most existing PMI implementations. For
example, in SLURM, one could overlay the ring on the SLURM
tree and implement the function as a prefix scan in O(p · logN)
time, where N is the number of nodes and p is the number of MPI
processes per node. This allows the MPI library to avoid Put, Get,
and Fence completely in most cases and therefore bypass the in-
herent complexities and inefficiencies in maintaining a global key-
value store within PMI.

We implement such a ring in SLURM’s PMI library. Instead
of overlaying the ring on the existing SLURM tree as described
above, we opt for a more direct approach and used SLURM’s point-
to-point message capability instead. The efficiency of this imple-
mentation stems from the fact that each node executes exactly two
inter-node exchanges while the majority of the information is ex-
changed intra-node.

4.2 Broadcast Hint for Put Operations
A PMI application can have different keys that are accessed in

different patterns. For example, to implement a broadcast operation
a single process can perform a Put operation and all other processes
can perform a Get. We classify these type of keys as DENSE. At
the same time, there can be keys which are read by only a small
number of processes. For example, an MPI library may form a ring
or a tree based overlay network which requires each key to be read
by a small number of processes independent of the number of total
processes in the job. The keys are classified as SPARSE. In case of
MVAPICH2, all the keys used to bootstrap the library falls under
the SPARSE category.

It is difficult for a PMI implementation to efficiently support both
class of keys without prior knowledge about their access patterns.
Broadcasting a SPARSE key to each process is inefficient, sim-
ilarly looking up a DENSE key through large number of remote
operations is not desirable. To eliminate this issue we propose
to enhance the PMI2_KVS_Put method to accept an additional
parameter which will provide this information. The key can be
flagged as SPARSE or DENSE. The DENSE keys can be propa-
gated through the existing PMI2_KVS_Fence method whereas
the SPARSE keys are looked up on-demand. The PMI library is
free to choose an appropriate implementation for the keys which
are not flagged either way.

4.3 Enhanced Get Operation
Currently PMI2_KVS_Get is defined as a local operation which

fails if the requested key is not available locally (recieved through
previous Fence operation). We enhance PMI2_KVS_Get to search
for the key at the remote host in this scenario and wait until the
remote node performs the corresponding PMI2_KVS_Put opera-
tion. This unifies the behavior of PMI2_KVS_Get with the local
PMI2_Info_GetNodeAttr, which can wait indefinitely until
the requested key is found.

5. EXPERIMENTAL RESULTS
In this section, we describe the experimental setup used to con-

duct micro-benchmark and application experiments to evaluate the
efficacy of existing startup mechanisms and that of the proposed de-
signs. An in-depth analysis of the results is also provided to corre-
late design motivations and observed behavior. All results reported

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

16 64 256 1K 4K 16K

T
im

e
 T

a
k
e

n
 (

S
e

c
o

n
d

s
)

Number of Processes

Current
Tree

DKVS
Direct

(a) Dense Key: one Get on same key per process

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

16 64 256 1K 4K 16K

T
im

e
 T

a
k
e

n
 (

S
e

c
o

n
d

s
)

Number of Processes

Current
Tree

DKVS
Direct

(b) Sparse Key: one Put + two Gets per process
Figure 7: Time taken for different access patterns under each design

here are averages of twenty runs to discard the effect of system
noise.

5.1 Experimental Setup
We used the Stampede supercomputing system at TACC to take

all performance numbers. Each compute node is equipped with In-
tel SandyBridge series of processors, using Xeon dual eight-core
sockets, operating at 2.70 GHz with 32 GB RAM. Each node is
equipped with MT4099 FDR ConnectX HCAs (56 Gbps data rate)
with PCI-Ex Gen2 interfaces. The operating system used is CentOS
release 6.3, with kernel version 2.6.32-279.el6 and OpenFabrics
version 1.5.4.1. SLURM-2.6.5 and MVAPICH2-2.0b were used to
implement the proposed designs. All numbers reported were taken
in fully subscribed mode with 16 processes per node.

5.2 Comparison of Different Designs
In Figure 7 we compare the efficacy of the different designs with

different class of keys. The baseline design is the default PMI-2 im-
plementation provided by SLURM, denoted as “Current”. “Tree”
refers to Design 1 (Hierarchical Tree), “DKVS” refers to Design 2
(Distributed Key Value Store) and “Direct” denotes Design 3 (Di-
rect Access from Source).

In these experiments, each Put submits a 16-byte value. “Cur-
rent” executes a sequence of Put, Fence, and Get. In the other
schemes, only Put and Get operations are needed and Fence is
omitted. We show the time taken for all processes to complete these
operations.

In Figure 7(a), a single process executes a single Put and all pro-
cesses execute a Get on this key, emulating a broadcast operation
using a key flagged as DENSE. For this type of keys, the “Current”
approach with Fence performs better.

In Figure 7(b) each process submits a single key with Put and
every process executes two Get operations to lookup the keys sub-
mitted by its neighbors in rank space. This effectively implements

 0

 1

 2

 3

 4

 5

 6

 7

32 128 512 2K 8K

T
im

e
 T

a
k
e

n
 (

S
e

c
o

n
d

s
)

Number of Processes

Hello World (Current)
Hello World (Proposed)

MPI Init(Current)
MPI Init (Proposed)

Figure 8: Time taken by MPI_Init and Hello World

a ring exchange and shows the use of a SPARSE key. For this type
of keys, “DKVS” and “Direct” are more suitable, as they impose a
constant cost with process count while “Current” scales linearly.

In general across all experiments, performance of the Current
scheme closely mimics the performance of the Fence operation.
Limited scalability of the “Tree” based scheme causes it to per-
form poorly at larger scale. The difference of one extra exchange
between the “DKVS” and the “Direct” schemes matches expected
behavior.

The critical point is that different strategies are required to trans-
port different key types, and a simple hint to Put is sufficient for
the PMI implementation to distinguish between these types.

Note also that while Figure 7(b) emulates a ring exchange us-
ing Put and Get calls, there is still value in defining PMI2_Ring.
First, if the processes within a node do not have consecutive PMI
ranks, PMI2_Ring can still be implemented using as few as two
inter-node messages per node, whereas emulating the ring exchange
with Put and Get requires as many as 2 · p inter-node messages per
node, where p is the number of processes per node. As a result,
PMI2_Ring can be significantly faster, and its advantage is ex-
pected to increase on future systems as the number of cores avail-
able on each node increases. Second, we believe PMI2_Ring can
be naturally implemented in most PMI implementations whereas
adding support for a distributed key-value store is likely more in-
trusive. Thus, even PMI implementations that force all keys to be
distributed via an allgather may still be able to efficiently support
PMI2_Ring.

5.3 Impact on MPI Startup
With the proposed PMI2_Ring method, MPI processes need

to do minimal communication over the out-of-band PMI channel.
Once the ring is established, the rest of the startup information can
be exchanged over the high performance InfiniBand network. The
time spent by the MPI library in different phases of communication
in this strategy is shown in Figure 9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

32 64 128 256 512 1K 2K 4K 8K

T
im

e
 T

a
k
e

n
 (

S
e

c
o

n
d

s
)

Number of Processes

InfiniBand
PMI Exchange
Shared Memory
Other

Figure 9: Breakdown of time spent by MVAPICH2 in various
phases with the proposed designs

 0

 1

 2

 3

 4

 5

 6

 7

EP MG CG FT BT SP

T
im

e
 T

a
k
e
n
 (

S
e
c
o
n
d
s
)

Benchmark

Current
Proposed

Figure 10: Time taken by NAS Parallel Benchmarks with 1,024
processes

With the new design, time spent in PMI exchanges is indepen-
dent of process count. In our current implementation, we use linear-
scaling algorithms to transfer data over InfiniBand, which we plan
to improve in the future. Despite this inefficiency, the hybrid ap-
proach is faster than exchanging all information over PMI.

In Figure 8, we show the time taken to execute a simple Hello
World program with the modified SLURM and MVAPICH2 and
compare against the unmodified version. Compared to the existing
PMI-2 implementation, the new designs improved performance of
MPI_Init by up to 34% and reduced the time taken by Hello
World by up to 33%. From the trends, we expect further improve-
ment at larger scales.

We also measure the running time of some applications from the
NAS Parallel Benchmarks (NPB) [7] with class B data and 1,024
processes in fully subscribed mode and observe improvements of
up to 20% in total running time as shown in Figure 10.

6. RELATED WORK
There has been significant work in the area of improving perfor-

mance and scalability of launching parallel applications. Multiple
process managers like PBS, MPD, Mpiexec, and Hydra have been
developed to reduce job scheduling and launch times.

Yu et al [8] explored using InfiniBand to reduce start up costs of
MPI jobs. We furthered this concept with the introduction of the
proposed PMI2_Ring collective, thus reducing the communica-
tion overhead even further. Sridhar et al proposed using a hierar-
chical ssh based tree structure similar to SLURM’s node daemon
implementation [9]. Gupta et al [10] proposed a smp-aware multi
level startup scheme with batching of remote shells. Goehner et al
analyzed the effect of different tree configurations and proposed a
framework called LIBI [11]. The impact of node level caching on
startup performance was evaluated by Sridhar et al in [12]. How-
ever, none of these works take advantage of faster communication
over high performance networks like InfiniBand.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we explored the limitations of the PMI-2 API re-

garding sparse communication patterns. We evaluated various al-
ternative designs to decouple data transfer from Fence and enhance
Put and Get operations. We also proposed PMI2_Ring, a new
data exchange collective that can be highly optimized. Using these,
we showed how MPI libraries can reduce communication cost dur-
ing start-up by avoiding nonessential data movement and taking
advantage of high performance networks. We were able to signif-
icantly improve performance and scalability of job startup in MPI
libraries. At 8,192 processes, launch time of MPI jobs was reduced
by up to 33%, with further gains expected at larger scales.

We conclude that the proposed three extensions to the PMI speci-
fication, namely a ring exchange collective, a broadcast hint to Put,
and an enhanced Get, provide dramatic benefits when starting up

large MPI jobs.
Going forward, we plan to explore more efficient methods to

exchange data over the ring or tree-based overlays to remove other
bottlenecks and further improve the performance and scalability of
MPI startup.

References
[1] J. Daly, “A Model for Predicting the Optimum Checkpoint

Interval for Restart Dumps,” in International Conference on
Computational Science, vol. 2660 of Lecture Notes in Com-
puter Science, pp. 3–12, 2003.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna,
E. Lusk, and R. Thakur, “PMI: A Scalable Parallel Process-
management Interface for Extreme-scale Systems,” in Re-
cent Advances in the Message Passing Interface, pp. 31–41,
Springer, 2010.

[3] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller,
et al., “Exascale Computing Study: Technology Challenges
in Achieving Exascale Systems,” DARPA IPTO, Tech. Rep,
vol. 15, 2008.

[4] D. K. Panda, K. Tomko, K. Schulz, and A. Majumdar, “The
MVAPICH Project: Evolution and Sustainability of an Open
Source Production Quality MPI Library for HPC,” in Int’l
Workshop on Sustainable Software for Science: Practice and
Experiences, Held in Conjunction with Int’l Conference on
Supercomputing, SC, 2013.

[5] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Sim-
ple Linux Utility for Resource Management,” in JSSPP 2003,
pp. 44–60, Springer, 2003.

[6] A. Moody, D. H. Ahn, and B. R. de Supinski, “Exascale Al-
gorithms for Generalized MPI_Comm_split,” in Recent Ad-
vances in the Message Passing Interface, vol. 6960 of Lecture
Notes in Computer Science, pp. 9–18, Springer, 2011.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, et al., “The NAS Parallel Bench-
marks,” IJHPCA, vol. 5, no. 3, pp. 63–73, 1991.

[8] W. Yu, J. Wu, and D. K. Panda, “Fast and Scalable Startup
of MPI Programs in InfiniBand Clusters,” in HiPC 2004,
pp. 440–449, Springer, 2005.

[9] J. K. Sridhar, M. J. Koop, J. L. Perkins, and D. K. Panda,
“ScELA: Scalable and Extensible Launching Architecture for
Clusters,” in HiPC 2008, pp. 323–335, Springer, 2008.

[10] A. Gupta, G. Zheng, and L. V. Kalé, “A Multi-level Scalable
Startup for Parallel Applications,” in Proceedings of the 1st
International Workshop on Runtime and Operating Systems
for Supercomputers, pp. 41–48, ACM, 2011.

[11] J. D. Goehner, D. C. Arnold, D. H. Ahn, G. L. Lee, B. R.
de Supinski, M. P. LeGendre, B. P. Miller, and M. Schulz,
“LIBI: A Framework for Bootstrapping Extreme Scale Soft-
ware Systems,” Parallel Computing, vol. 39, no. 3, pp. 167–
176, 2013.

[12] J. K. Sridhar and D. K. Panda, “Impact of Node Level
Caching in MPI Job Launch Mechanisms,” in Recent Ad-
vances in Parallel Virtual Machine and Message Passing In-
terface, pp. 230–239, Springer, 2009.

