
On-demand Connection Management for
OpenSHMEM and OpenSHMEM+MPI

Sourav Chakraborty, Hari Subramoni, Jonathan Perkins, Ammar A. Awan and Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
{chakrabs, subramon, perkinjo, awan, panda}@cse.ohio-state.edu

Abstract—Partitioned Global Address Space (PGAS) pro-
gramming models like OpenSHMEM and hybrid models like
OpenSHMEM+MPI can deliver high performance and improved
programmability. However, current implementations of Open-
SHMEM assume a fully-connected process model which affects
their performance and scalability. We address this critical issue
by designing on-demand connection management support for
OpenSHMEM which significantly improves the startup perfor-
mance and reduces the resource usage. We further enhance
the OpenSHMEM startup performance by utilizing non-blocking
out-of-band communication APIs. We evaluate our designs using
a set of microbenchmarks and applications and observe 30 times
reduction in OpenSHMEM initialization time and 8.3 times
improvement in execution time of a Hello World application
at 8,192 processes. In particular, when sufficient work can
be overlapped, we show that use of non-blocking out-of-band
communication APIs allow for a constant initialization cost of
OpenSHMEM jobs at different core counts. We also obtain up to
90% reduction in number of network endpoints and up to 35%
improvement in application execution time with NAS Parallel
Benchmarks.

Index Terms—On-demand Connection Management; OpenSH-
MEM; PGAS; Job Launch; InfiniBand

I. INTRODUCTION AND MOTIVATION

Fast and scalable startup is an often overlooked but im-
portant aspect of High Performance Computing (HPC) jobs.
It is often necessary to restart an HPC job multiple times
during development and debugging. Reducing startup costs
from minutes to seconds can cumulatively save developers
hours of time. While testing a system or while regression
testing an application, many large-scale, quick-running jobs
must be run in succession. In this case, startup becomes the
dominant cost so that improving startup dramatically speeds
up testing time.

While Message Passing Interface (MPI) [1] has been the
dominant programming model in the HPC world, MPI does
not lend itself well for writing all types of parallel applications.
As an example, applications with irregular communication
patterns such as Graph500 [2] are considered well suited for
the Partitioned Global Address Space (PGAS) [3] program-
ming model. OpenSHMEM [4] is a popular library based
implementation of the PGAS model, which can often improve
programmability while providing similar or better performance
compared to MPI. As a result, PGAS and OpenSHMEM

*This research is supported in part by National Science Foundation grants
#OCI-1148371 and #CCF-1213084.

have recently seen increased adoption in the HPC community.
Hybrid MPI+PGAS models are gaining popularity as they
enable developers to take advantage of the PGAS model in
their MPI applications, without having to rewrite the complete
application [5, 6]. The Exascale roadmap identifies the hybrid
model as the ‘practical’ way of programming Exascale sys-
tems [7]. Unified communication runtimes, like MVAPICH2-
X [8], are enabling the efficient use of these hybrid models
by consolidating resources normally used by two different run-
times, thereby providing performance, scalability, and efficient
resource utilization. They also prevent deadlocks arising from
independent progress of different runtimes [9].

High-performance OpenSHMEM implementations for In-
finiBand [10] use the GASNet communication middleware,
specifically the GASNet-ibv conduit [11] or the GASNet-
mvapich2x conduit [8] to interface with the underlying net-
work. InfiniBand is a widely used industry standard high-speed
interconnect which provides low latency, high bandwidth, one-
sided and atomic access to remote process’s memory. The
one-sided operational model defined by OpenSHMEM can be
easily mapped to the features provided by the InfiniBand net-
work. InfiniBand supports both connection-oriented (Reliable
Connected - RC) and connection-less (Unreliable Datagram
- UD) transport protocols [12, 13]. However, many of the
useful features like reliability and atomic access are only
available in the RC protocol. A drawback of the RC protocol
is that each connection requires two Queue Pairs (QP) and
associated structures which can consume a significant amount
of memory in large fully-connected process groups. In all
existing InfiniBand based high-performance implementations
of OpenSHMEM and GASNet, each process creates N IB
endpoints (QPs) and connects to all N processes (including
itself) taking part in the OpenSHMEM application during
initialization. The total number of connections opened is N2

2
and the number of QPs created is N2.

Although this connection model is simple to implement,
it adversely affects the scalability and performance of the
application in following ways:

1) Establishment and teardown of a fully connected net-
work is a costly operation. In fact, at large scale this
becomes the dominant factor in time taken to launch
and terminate an OpenSHMEM program (Startup Per-
formance). Figure 1 shows the amount of time consumed
by different steps in OpenSHMEM initialization, as



 PMI Exchange
 Memory Registration
 Shared Memory Setup
 Other

  0

  5

  10

  15

  20

  25

  30

  35

32 64 128 256 512 1K 2K 4K

T
im

e
 T

a
k
e

n
 (

s
e

c
o

n
d

s
)

Number of Processes

 Connection Setup

Fig. 1. Breakdown of time spent in OpenSHMEM initialization with 16
processes per node

measured on Cluster-B (described in section V-A).
2) The number of connections opened and QPs created

increase quickly as the process count grows and con-
tributes to the memory pressure. This problem is only
going to be exacerbated by the newer generation hard-
ware as number of cores per node continues to grow.

3) Most current generation network interface cards (HCA)
have limited on-board memory to cache information
about recently used endpoints and connections. With a
large number of connections created on each HCA, their
performance can be negatively impacted [12, 13].

4) As prior research shows, most HPC applications only
communicate with a subset of its peer processes. Thus
establishing alltoall connectivity for all HPC applica-
tions is unnecessary and wasteful. Our analysis shown in
Table I also confirms this pattern for pure OpenSHMEM
as well as hybrid OpenSHMEM+MPI applications.

TABLE I
AVERAGE NUMBER OF COMMUNICATING PEERS PER PROCESS FOR

DIFFERENT APPLICATIONS. THIS IS DEPENDENT ON BOTH
POINT-TO-POINT AND COLLECTIVE OPERATIONS.

Application Number of Processes Average Number of Peers

BT 64 8.7
1024 10.6

EP 64 3
1024 5.01

MG 64 9.46
1024 11.9

SP 64 8.75
1024 10.7

2D Heat 64 5.28
1024 5.40

The second major component in the startup of OpenSH-
MEM jobs is the cost associated with exchanging information
within the runtime that is needed to initialize high-performance
IB communication channels between processes in the job.
For portability, most job launchers provide a common “out-
of-band” communication infrastructure known as the Process
Management Interface (PMI) [14]. Current implementations

of PMI scale poorly on today’s largest systems – a problem
that will only be exacerbated on next generation exaflop
systems that are expected to have O(100,000) to O(1,000,000)
hosts [15]. Prior research from the authors as well as other
groups [16–18] have identified the need for and the benefits
of using non-blocking PMI APIs for improving the startup
of MPI-based parallel applications on large supercomputing
systems. However, existing OpenSHMEM implementations do
not take advantage of these APIs to enhance the startup perfor-
mance of pure OpenSHMEM or hybrid OpenSHMEM+MPI
applications.

These issues lead us to the following broad challenge
— Can we enhance the existing OpenSHMEM runtime
design to improve the startup time and scalability of pure
OpenSHMEM and hybrid OpenSHMEM+MPI parallel
applications on large supercomputing systems?

In this paper, we take up this challenge, and propose
two major designs changes to the OpenSHMEM runtime to
address them: 1) an on-demand connection establishment and
data exchange scheme and 2) utilizing non-blocking allgather
collective (PMIX Iallgather) for “out-of-band” exchange of IB
end point information at startup.

II. CONTRIBUTIONS

To summarize, this paper makes the following contributions:

• Propose, design and implement on-demand connection
establishment scheme for high performance OpenSH-
MEM runtimes

• Utilize the non-blocking allgather collective
(PMIX Iallgather) for “out-of-band” exchange of
IB endpoint information at startup scheme for high
performance OpenSHMEM runtimes

• Evaluate the benefits the new designs have on perfor-
mance at the microbenchmark level using OpenSHMEM
microbenchmarks and at the application level using NAS
parallel benchmarks

Figure 2 summarizes the benefits our proposed design brings
to different aspects of job performance, namely, resource
usage, startup time and application performance. The proposed
designs lead to significant benefits in terms of resource usage
and startup time and moderate benefits in terms of overall
application performance. We also evaluate our designs using
a set of microbenchmarks and applications and observe 30
times and 8.3 times improvement in initialization and startup
performance respectively at 8,192 processes. In particular,
when sufficient work can be overlapped, we show that the
use of non-blocking out-of-band communication APIs allows
for a constant initialization cost of OpenSHMEM jobs at
different core counts. We also obtain up to 90% reduction in
number of network endpoints and up to 35% improvement in
application execution time at 1,024 processes. While we use
OpenSHMEM for our evaluations in this paper, our designs are
applicable to other PGAS languages such as Unified Parallel
C (UPC) [19] or Co-Array Fortran (CAF) [20] as well.



Execution
Time

Resource 
Usage

Startup
Time

Current Design

Proposed Design

Closer to Center
is Better

Fig. 2. Benefits of the proposed design on different performance aspects

III. BACKGROUND

In this section we describe the background information
necessary for this paper.

A. Partitioned Global Address Space

The Partitioned Global Address Space (PGAS) program-
ming model brings the traditional shared memory model into
a distributed memory setting. Instead of declaring all memory
as shared, the address space is partitioned such that each
processing element or PE (which can be a process or a
thread) has affinity towards one partition. Global memory
allocations are typically distributed over the partitions. Each
PE can access local as well as remote memory in other
partitions. The remote memory accesses are performed through
library calls (in OpenSHMEM) or variable references (in
languages like UPC) which get translated by the compiler. For
ease of use and performance considerations, existing PGAS
languages like Unified Parallel C (UPC), Co-Array Fortran
(CAF), Titanium [21] also provide collective, synchronization,
and bulk transfer APIs.

B. OpenSHMEM

OpenSHMEM is a library-based implementation of the
PGAS programming model that was developed in an effort to
standardize and bring together various SHMEM and SHMEM-
like implementations. OpenSHMEM provides one-sided point-
to-point and collective operations, a shared memory view,
and atomic operations. In OpenSHMEM, global variables can
be allocated at runtime in a special memory area called the
symmetric heap. To support Remote Direct Memory Address
(RDMA) access to the heap of a remote process, the partic-
ipant processes are required to exchange certain information
beforehand.

C. InfiniBand

InfiniBand is a switched fabric interconnect used in many
supercomputing clusters world-wide. The InfiniBand hardware
(Host Channel Adapter or HCA) is accessed through an
interface called verbs. To perform any communication using
the HCA, the software needs to create at least one Queue Pair
(QP). Any send/receive or read/write operations are posted
as elements in the work request queue. The HCA generates
events on the completion queue to notify completion of each
operation. The software can poll the completion queue to
detect completion of requested work items.

InfiniBand also provides multiple transport protocols with
different capabilities and guarantees. The most commonly used
ones are Reliable-Connected (RC) and Unreliable-Datagram
(UD). RC is a connection-oriented, reliable (HCA takes care
of retransmission of dropped packets) protocol which requires
one QP per process per connection. UD on the other hand is a
connection-less unreliable protocol and requires only one QP
per process to communicate with any number of processes.
One of the important features of InfiniBand is Remote Direct
Memory Access (RDMA). This feature allows a local process
to directly access memory of another remote process without
involving the software on the remote side. Full details of
the InfiniBand capabilities are available in the InfiniBand
specification [22].

D. GASNet

The GASNet specification [11] describes a language and
network-independent high-performance communication inter-
face for implementing the runtime system for global address-
space languages. The GASNet interface consists of two com-
ponents: 1) a Core API which is based on active messages and
2) an Extended API which is a more expressive and powerful
interface that provides remote-memory access and collective
operations.

GASNet is available on a variety of networks and these
network-specific implementations are referred to as ‘conduits’.
A conduit is required to implement the core API and can op-
tionally provide the extended API. GASNet-ibv is a commonly
used conduit that implements these functionalities using the
InfiniBand verbs interface.

The limitation of the ibv conduit arises from the fact that
a hybrid application using both MPI and PGAS programming
models requires two separate runtimes. This creates additional
overhead and potential deadlock conditions caused by the
inter-operation of the two separate stacks. The GASNet-
mvapich2x conduit [9] provides a unified common runtime
for both MPI and PGAS languages and delivers higher
performance with lower overhead. Figure 3 illustrates the
relationships between the different middlewares.

E. Process Management Interface

Process Management Interface (PMI) defines a portable
interface that many HPC middlewares like MPI libraries
and GASNet use to initialize communication between the
processes of the parallel job. PMI is typically implemented



InfiniBand

GASNet
mvapich2x conduit

GASNet
ibv conduit

OpenSHMEM MPI+OpenSHMEM

Fig. 3. OpenSHMEM implementation over InfiniBand using GASNet
conduits

as a client-server library with the process manager (e.g.,
SLURM, mpirun rsh, Hydra) acting as the server and the
middleware taking the role of the client. The core functionality
of PMI is to provide a global key-value store (KVS) that
the processes can use to exchange information. The basic
operations in PMI are PMI2_KVS_Put, PMI2_KVS_Get,
and PMI2_KVS_Fence, which we refer to as Put, Get, and
Fence, respectively. Put adds a new key-value pair to the store,
and Get retrieves a value given a key. Fence is a synchronizing
collective across all processes in the job. It ensures that any
Put made prior to the Fence is visible to any process via a
Get after the Fence.

Non-blocking Extensions to PMI2: Our earlier work [16]
has shown that Fence is the most time consuming part of the
Put-Fence-Get sequence. But as it is a blocking operation, the
processes are idle and cannot perform any useful work while
the Fence operation is progressed by the process manager.
To mitigate this, we proposed a non-blocking version of
the Fence operation where the calling process can overlap
the Fence operation with other initialization steps [17]. As
a further optimization, we also proposed a new PMI op-
eration PMIX_Iallgather that combines the Put-Fence-
Get sequence into a single operation and takes advantage
of the symmetric data movement pattern commonly found
in the middlewares for improved efficiency. Before the data
is accessed after calling Iallgather or a Get is performed
after a Fence, the process needs to call another function
PMIX_Wait that ensures completion of the outstanding non-
blocking operations.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the challenges of introducing
on-demand connection management in OpenSHMEM and the
designs introduced to solve them efficiently.

A. Two-Phase Connection Establishment in InfiniBand

InfiniBand provides a peer-to-peer connection model where
the communicating processes need to create endpoints (QP)

and perform certain operations on them to establish a connec-
tion. However, each process needs to obtain the < lid, qpn >
tuple (roughly equivalent to IP address and port number)
for the remote QP in order to perform these operations. As
InfiniBand does not provide an efficient way to obtain this
information for a given remote process, an out-of-band channel
(typically based on TCP) must be used in conjunction.

In both the ibv and mvapich2x conduits of GASNet,
connection establishment is performed in two phases. At
first, each process creates an UD endpoint and publishes the
< lid, qpn > tuple through an out-of-band channel called
Process Management Interface (PMI). A process (referred to as
client) trying to communicate with a remote process (referred
to as server) needs to query the PMI key-value store using the
rank of the remote process as the key.

To establish a connection, the client creates an RC endpoint
and sends a request message to the server through the
previously created UD endpoint. The message contains the
rank of the client as well as the < lid, qpn > tuple of
the newly created RC endpoint. The server then creates a
corresponding RC endpoint and sends a reply message with
the same information. Now both the processes have all the
necessary information to establish the connection. Since UD
is not reliable, the software needs to handle dropped, out
of order or duplicate messages. The processes also need to
have a collision handling mechanism if both processes try to
initiate the connection by sending the request message at the
same time. Figure 4 illustrates the message exchange protocol
followed to establish a connection.

B. Key Exchange in OpenSHMEM

During initialization, each process in OpenSHMEM allo-
cates one or more memory segments which are used as storage
for global or dynamically allocated variables. The one-sided
access semantics of OpenSHMEM requires each process to
be able to read from and write to remote process’s segments.
While it is possible to have a design based on message passing
and polling, the achievable performance would be poor.

InfiniBand’s Remote Direct Memory Access (RDMA) se-
mantics are well-suited for such accesses. Using RDMA, a
process can read from and write to a remote process’s memory
without involving the remote process. For this scheme to
work, the remote process must register the memory segment
with the HCA and the caller process needs to obtain the
triplet < address, size, rkey > of the remote process. The
parameters address and size refer to the starting address
and the size of the registered segment respectively, and rkey
(Remote Key) is a unique identifier obtained on registering the
segment with the HCA.

After allocating the segments, the OpenSHMEM process
registers them and sends the < address, size, rkey > triplets
to every other process. OpenSHMEM uses the GASNet active
message interface to send this information directly to each
target process, which requires connections to be created be-
tween each pair of processes. Based on this, we identify three
inefficiencies that we can eliminate:



Main 
Thread

Connection 
Manager Thread

Process #1

Main 
Thread

Connection 
Manager Thread

Process #2

Connect Request
(QP #, LID)

· Send(P#2)
· Create QP

Connect Reply
(QP #, LID)

· Create QP

· QP State 
(Init -> RTR)

· QP State 
(UnInit -> Init)

· QP State 
(UnInit -> Init)

· QP State
    (Init -> RTR)
· QP State
    (RTR -> RTS)

EstConn(P#2)

Send (P#2)

· Enqueue 
Send(P#2)

· Dequeue 
Send(P#2)

· QP State
     (RTR -> RTS)

· EstConn(P#1)

Fig. 4. Connection setup protocol in GASNet-mvapich2x conduit

1) Each process broadcasts its segment address and keys
which forces establishment of all-to-all connectivity
even if the underlying conduit supports on-demand con-
nection setup.

2) After connection setup, each process sends another
message containing the < address, size, rkey > triplet,
causing additional overhead.

3) OpenSHMEM uses a number of global barriers during
initialization which results in connections being setup.

C. On-demand Connection Mechanism in OpenSHMEM

We modify the OpenSHMEM implementation to avoid the
broadcast of the segment keys during initialization. Instead,
the segment information is serialized and stored in a buffer.

When the client process initiates a connection, the GASNet
conduit appends the data stored in the buffer with the con-
nection request message. When the server process receives
this message, the conduit extracts the buffer and passes it to
OpenSHMEM which can then parse the contents and populate
the segment information for the client process. The same pro-
cess is repeated with the reply message from the server to the
client. In essence, the segment information exchange packets
are combined with the connection establishment packets and
as a result, both the processes have the information to perform
RDMA read/write operations on the connected peer as soon
as the connection is established.

Since GASNet conduits need to support other implemen-
tations or other models such as UPC, it is not ideal for the
conduit to handle the packing and unpacking of the segment
information. To achieve this, the conduit layer allows the

buffer to be read, written or ignored by the upper layer
(OpenSHMEM/UPC) as necessary. This separation of con-
cerns allows our design to be easily used by any similar
PGAS language or implementation and also makes it backward
compatible.

D. Overlapping PMI Communication with Initialization

We use the non-blocking PMI extensions described in
Section III-E to accelerate the job initialization time. In-
stead of the Put-Fence-Get operations, the more efficient
PMIX_Iallgather method is used to exchange the UD
endpoint information among all the processes. While this
exchange is being performed by the process manager over
TCP, the processes can perform independent steps like memory
registration. It should be noted that with the static connection
mechanism, the Fence or the Allgather step needs to be
completed at initialization, before the connection establish-
ment phase. With the on-demand connection setup mechanism,
this is no longer required and the processes can complete
initialization and start the actual computation as the Allgather
progresses in the background. A process needs to check for
completion of the outstanding non-blocking operations only
when it attempts to communicate with another process. Since
the launching of the Allgather operation takes minimal amount
of time, the cost of the PMI exchange can be completely or
partially hidden depending on how much time the application
spends in computation before entering the communication
stage. The application enters the communication phase only
after the PMI operations have completed, hence the PMI
related traffic does not interfere with the application traffic.



 0

 20

 40

 60

 80

 100

 32  64  128  256  512 1K 2K 4K 8K

T
im

e 
T

ak
en

 (
se

co
n

d
s)

Number of Processes

Hello World - Current
start_pes - Current

Hello World - Proposed
start_pes - Proposed

(a) OpenSHMEM initialization and Hello World

  0

  1

  2

  3

  4

32 64 128 256 512 1K 2K 4K

T
im

e 
T

ak
en

 (
se

co
n
d
s)

Number of Processes

 Memory Registration
 Shared Memory Setup
 Other

(b) Breakdown of time spent in OpenSHMEM initialization

Fig. 5. Startup performance of OpenSHMEM with proposed designs on Cluster-B with 16 processes per node

E. Shared Memory Based Intra-Node Barrier

To synchronize the processes during initialization,
OpenSHMEM uses a number of calls to the method
shmem_barrier_all(). According to the specification
this needs to be implemented as a global barrier operation
across all processes and it would require at least O(log P )
connections to be established where P is the number of
processes. With the introduction of the on-demand connection
management, processes on different nodes no longer need
to be explicitly synchronized. Processes on the same node,
however, still require some synchronization to complete
different phases of the initialization in tandem. We implement
an intra-node barrier in the conduit and replaced the global
barriers with the intra-node variant. This significantly reduces
the time each process needs to spend in the initialization
phase.

While launching a large scale job, the arrival pattern of
the processes can vary considerably in absence of any global
synchronization. This can result in a scenario where a client
process can send a connection request before the server
process is ready to handle the request, e.g., it has not yet
registered its own segments. In such cases, the reply message
is held until the server is ready. This may trigger a timeout
on the client side causing a retransmission. The conduits can
treat this scenario similar to a lost message and handle it
accordingly.

V. EXPERIMENTAL RESULTS

In this section, we compare our proposed on-demand
connection mechanism with the existing static connection
mechanism using a set of different microbenchmarks and
applications. We focus on three major aspects — time taken
for initialization and launching the job, overhead introduced by
on-demand connection establishment, and resource utilization.

A. Experimental Setup

We used two different clusters for our evaluation.

Cluster-A: This cluster has 144 compute nodes with Intel
Westmere series processors, using Xeon dual quad-core sock-
ets operating at 2.67 GHz and 12 GB of RAM. Each node
is equipped with Mellanox MT26428 QDR Connect-X HCAs
(32 Gbps) with PCI-Ex Gen2 interface. The operating system
used is Red Hat Enterprise Linux Server release 6.3 (Santiago),
with kernel version 2.6.32-71.el6 and OpenFabrics version
1.5.3-3.
Cluster-B: We used the Stampede supercomputing system at
TACC [23] to take large scale performance numbers. Each
compute node is equipped with Intel SandyBridge series of
processors, using Xeon dual eight-core sockets, operating at
2.70 GHz with 32 GB RAM. Each node is equipped with
MT4099 FDR ConnectX HCAs (56 Gbps data rate) with PCI-
Ex Gen2 interfaces. The operating system used is CentOS
release 6.3, with kernel version 2.6.32-279.el6 and OpenFab-
rics version 1.5.4.1. The numbers reported were taken in fully
subscribed mode with 16 processes per node.

For the experiments, we used MVAPICH2-X 2.1rc1, Open-
SHMEM based on OpenSHMEM version 1.0h and GASNet
version 1.24.0. For microbenchmarks, we used the OSU mi-
crobenchmarks suite [24] version 4.4. The OpenSHMEM ports
of the NAS parallel benchmarks suite were obtained from
the official OpenSHMEM repository [25]. The performance
numbers reported in Figure 1 and Figure 5 were taken on
Cluster B and all other experiments were performed on Cluster
A. The collective operations and applications were evaluated
in a fully subscribed manner with 8 processes per node.

B. Impact on Job Startup

We look at two metrics — time taken for initialization
and completion of a simple Hello World application. For
measuring the initialization time, we introduce a new bench-
mark in which each process measures the time taken for the
start_pes (OpenSHMEM equivalent of MPI_Init) call
and reports the average. For Hello World, we just measure



 1

 10

 100

 1000

 1  8  64  512 4K 32K 256K1M

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (Bytes)

Static
On-Demand

(a) shmem get

 1

 10

 100

 1000

 1  8  64  512 4K 32K 256K1M

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (Bytes)

Static
On-Demand

(b) shmem put

  0

  1

  2

  3

  4

  5

fa
d
d

fi
n
c

ad
d

in
c

cs
w

ap

sw
ap

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Operation

Static
On−Demand

(c) shmem atomics

Fig. 6. Performance comparison of point-to-point and atomic operations on Cluster-A

 10

 100

 1000

 10000

 100000

 1e+06

 8  64  512 4K 32K 256K1M

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (Bytes)

Static
On-Demand

(a) shmem collect with 512 processes

 10

 100

 1000

 10000

 8  64  512 4K 32K 256K1M

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (Bytes)

Static
On-Demand

(b) shmem reduce with 512 processes

 0

 4

 8

 12

 16

 20

 8  16  32  64  128  256  512

L
at

en
cy

 (
m

ic
ro

se
co

n
d
s)

Number of Processes

Static
On-Demand

(c) shmem barrier all

Fig. 7. Performance comparison of collective operations on Cluster-A

the wall clock time as reported by the job launcher. We show
average of 20 iterations to avoid effects of system noise.

Figure 5(a) shows the improvements obtained by the appli-
cation of the on-demand connection setup mechanism. With
the existing static connection based design, time taken for
start_pes grows rapidly at large scale whereas with the
new design it takes near-constant time at any process count.
At 8,192 processes, start_pes completes nearly 30 times
faster with the new design. Figure 5(b) shows the breakdown
of the initialization procedure with on-demand connections
and non-blocking PMI collectives. Compared to the static
method shown in Figure 1, there is negligible time spent on
PMI operations and connection setup phase.

Performance of Hello World shows a similar trend. At
8,192 processes our design performs 8.3 times better than
the static connection based mechanism. The reason behind
the difference in the improvement obtained is twofold: 1)
The Hello World application provides minimal opportunity for
overlapping the PMI communication with actual computation
and 2) Even if the application does no communication, a global
barrier is required at finalize to ensure proper termination
of the program. This barrier requires completion of the PMI
operations and establishment of some connections.

C. Performance of Point-to-point and Collective Operations

At a microbenchmark level, the on-demand and static con-
nection establishment methods show identical performance. In
Figure 6, we compare the performance of shmem_put and
shmem_get for different message sizes and also the latency

of different atomics like swap, compare and swap among
others. In all cases, there is less than 3% difference between
the two approaches.

Figure 7 shows that the performance of
shmem_barrier_all at different process counts is
similar for both schemes. We also show the performance
of a dense (shmem_collect) and a relatively sparse
(shmem_reduce) collective operation with 512 processes.
It should be noted that while static connections are pre-
established, for on-demand setup the time taken to establish
the connections is included in the timing loop and is amortized
over multiple iterations. The reported numbers are averaged
across 1,000 iterations and 5 different runs.

D. Performance of OpenSHMEM Application

Although the performance of point-to-point and collective
operations remains unchanged, applications benefit from the
shorter initialization time and perform better in terms of total
execution time. The improvement observed depends on the
application’s communication characteristics, specifically the
amount of time it spends in computation before initiating
the first communication, and how many peer processes it
communicates with. We use the OpenSHMEM versions [25]
of NAS parallel benchmarks suite [26] for our evaluation.
Unfortunately, not all of the applications have been ported to
OpenSHMEM. Figure 8(a) compares the total execution time
of the applications as reported by the job launcher with static
and on-demand connection mechanisms using class B on 256
cores. We observe improvements ranging from 18% to 35%



  0

  2

  4

  6

  8

BT EP MG SP

T
im

e
 T

a
k

e
n

 (
S

e
c
o

n
d

s)

Benchmark

Static
On−Demand

(a) OpenSHMEM NAS benchmarks with 256 processes

  0

  100

  200

  300

16 32 64 128 256 512

T
im

e
 T

a
k

e
n

 (
S

e
c
o

n
d

s)

Number of Processes

Static
On−Demand

(b) Hybrid Graph500 with different process counts

Fig. 8. Comparison of execution time of OpenSHMEM and hybrid MPI+OpenSHMEM applications on Cluster-A

in the applications.

E. Performance of Hybrid (MPI+OpenSHMEM) Application

A scalable version of the Graph500 application using hybrid
MPI+OpenSHMEM programming model was introduced by
Jose et al [5]. We measured the execution time of this
application with up to 512 processes using static and on-
demand connection mechanisms. As shown in Figure 8(b),
we see negligible performance difference (< 2%) between
the two schemes. The graph used for this evaluation consisted
of 1,024 vertices and 16,384 edges. The total execution time
reported here includes time spent in generation of the graph
and validation of the results.

F. Impact on Resource Usage and Scalability

With the on-demand connection setup mechanism, the
number of connections, endpoints and associated resources
created are limited by what the application actually requires.
Consequently, the resource utilization is always 1 whereas for
the static connection mechanism generally only a small subset
of the endpoints created would be actually used. From Table I
it is easy to see that the number of communicating peers
per process does not increase linearly with the total process
count. Rather, this number stays nearly constant or grows sub-
linearly as the surface-to-volume ratio of the computational
grid decreases.

Figure 9 illustrates how the communication pattern of a
few different application varies with number of processes.
The applications have fewer communicating peers per pro-
cess compared to the number of total processes and benefit
significantly from the on-demand connection setup scheme.
The 2D-Heat kernel [27] shows the best scalability, followed
by EP; while BT, MG, and SP shows very similar resource
usage. The data collected with process counts 64, 256 and
1,024 is used in a linear regression to estimate the resource
usage at 4,096 process. At 1,024 processes, the applications
show more than 90% reduction in number of connections and
endpoints which directly translates to lower memory usage

 1

 10

 100

 1000

 10000

 64  256 1,024 4,096
(Projected)

A
v

er
ag

e 
N

u
m

b
er

 o
f 

E
n

d
p

o
in

ts
C

re
at

ed
 p

er
 P

ro
ce

ss

Number of Processes

Static
2DHeat

BT
EP

MG
SP

Fig. 9. Actual and projected resource usage for different applications

and higher scalability, with even higher benefits estimated at
larger process counts. It should be noted that the number of
peers for a given application can vary based on the runtime’s
implementation of various collective operations.

VI. RELATED WORK

A large body of research work exists that focuses on
improving scalability and performance of launching large-
scale parallel applications. The implementation and impact of
on-demand connection management in MPI over VIA-based
networks was presented by Wu et al [28]. An implementation
for on-demand connections for the ARMCI interface is de-
scribed in [29]. While [28] was purely in the context of MPI,
[29] attempted to expand the use of [28] to the context of the
ARMCI programming model. However, both these works only
explored on-demand method to startup jobs. In this paper we
focus primarily on OpenSHMEM instead of the underlying
communication library and we also explore the possibility of
overlapping the “out-of-band” PMI based communication with
startup related activities using non-blocking extensions to PMI.



Yu et al [30] proposed a ring based startup scheme for
MPI programs on InfiniBand clusters. Our earlier work [16]
introduced a novel PMIX_Ring collective to minimize the
amount of data movement performed at initialization. We
further proposed non-blocking extensions to the PMI interface
in [17] where we demonstrated the use of split-phase Fence
and Allgather routines to achieve near-constant startup time
for MPI applications. In this work we take advantage of the
proposed extensions to accelerate OpenSHMEM startup in a
similar fashion.

Multiple researchers have proposed different connection
schemes [12, 13, 31–33] to improve the scalability of MPI
runtimes over InfiniBand. The MVAPICH-Aptus runtime [34]
dynamically selects the UD or RC protocol based on the
application’s communication pattern.

Fundamental research on a Unified Communication Run-
time (UCR) for MPI and UPC appears in [9]. It describes an
integrated runtime that enables simultaneous communication
for UPC and MPI over InfiniBand. The runtime was later ex-
tended to support OpenSHMEM in [35]. Our work effectively
utilizes this runtime for simultaneous OpenSHMEM and MPI
communication.

VII. CONCLUSION AND FUTURE WORK

In this paper, we show the shortcomings of the existing static
connection mechanism in OpenSHMEM. We implement an
on-demand connection setup mechanism in OpenSHMEM that
leverages the capabilities of the underlying GASNet conduits
to establish connections between communicating peers only.
We also take advantage of non-blocking PMI APIs and reduce
synchronization by removing global barriers in favor of intra-
node barriers. With these designs we are able to dramatically
improve job startup time, resource utilization and scalability of
pure OpenSHMEM and hybrid MPI+OpenSHMEM applica-
tions without introducing any additional overhead. Our designs
show 30 times reduction in initialization time and 8.3 times
improvement in execution time of a Hello World application.
We also improve resource utilization by reducing the number
of network endpoints by up to 90% and show up to 35%
improvement in execution time of the NAS parallel benchmark
suite applications.

Our designs are already available in the latest public release
of MVAPICH2-X (version 2.1rc1). As part of future work, we
intend to evaluate the effectiveness of our designs on different
applications at a larger scale. We also plan to extend our work
to other PGAS languages such as UPC and CAF.

ACKNOWLEDGMENTS

We would like to thank Dr. Khaled Hamidouche for his
valuable input and feedback.

REFERENCES

[1] MPI: A Message-Passing Interface Standard, Message
Passing Interface Forum, Mar 1994.

[2] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A.
Ang, “Introducing the Graph 500,” Cray Users Group
(CUG), 2010.

[3] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Hus-
bands et al., “Productivity and Performance using Parti-
tioned Global Address Space Languages,” in Proceedings
of the 2007 international workshop on Parallel symbolic
computation. ACM, 2007, pp. 24–32.

[4] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn,
C. Koelbel, and L. Smith, “Introducing OpenSHMEM:
SHMEM for the PGAS Community,” in Proceedings of
the Fourth Conference on Partitioned Global Address
Space Programming Model. ACM, 2010, p. 2.

[5] J. Jose, S. Potluri, K. Tomko, and D. K. Panda, “Design-
ing Scalable Graph500 Benchmark with Hybrid MPI+
OpenSHMEM Programming Models,” in Supercomput-
ing. Springer, 2013, pp. 109–124.

[6] J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche,
K. Schulz, H. Sundar, and D. K. Panda, “Designing
Scalable Out-of-core Sorting with Hybrid MPI+ PGAS
Programming Models,” in Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address Space
Programming Models. ACM, 2014, p. 7.

[7] A. Geist, “Paving the Roadmap to Exascale,” SciDAC
Review, vol. 16, 2010.

[8] MVAPICH2-X: Unified MPI+PGAS Communication
Runtime over OpenFabrics/Gen2 for Exascale Systems,
http://mvapich.cse.ohio-state.edu/.

[9] J. Jose, M. Luo, S. Sur, and D. K. Panda, “Unifying
UPC and MPI runtimes: Experience with MVAPICH,”
in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM,
2010, p. 5.

[10] (2015) Infiniband Trade Association. [Online]. Available:
http://www.infinibandta.org/

[11] D. Bonachea, “GASNet Specification, v1. l,” Univ. Cal-
ifornia, Berkeley, Tech. Rep. UCB/CSD-02-1207, 2002.

[12] M. Koop, J. Sridhar, and D. K. Panda, “Scalable MPI
Design over InfiniBand using eXtended Reliable Con-
nection,” IEEE Int’l Conference on Cluster Computing
(Cluster 2008), September 2008.

[13] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “High
Performance MPI Design using Unreliable Datagram for
Ultra-Scale InfiniBand Clusters,” in ICS ’07: Proceedings
of the 21st annual international conference on Supercom-
puting. New York, NY, USA: ACM, 2007, pp. 180–189.

[14] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Kr-
ishna, E. Lusk, and R. Thakur, “PMI: A Scalable Par-
allel Process-management Interface for Extreme-scale
Systems,” in Recent Advances in the Message Passing
Interface. Springer, 2010, pp. 31–41.

http://www.infinibandta.org/


[15] K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill,
J. Hiller et al., “Exascale Computing Study: Technology
Challenges in Achieving Exascale Systems,” DARPA
IPTO, Tech. Rep, vol. 15, 2008.

[16] S. Chakraborty, H. Subramoni, J. Perkins, A. Moody,
M. Arnold, and D. K. Panda, “PMI Extensions
for Scalable MPI Startup,” in Proceedings of the
21st European MPI Users’ Group Meeting, ser.
EuroMPI/ASIA ’14. New York, NY, USA: ACM,
2014, pp. 21:21–21:26. [Online]. Available: http:
//doi.acm.org/10.1145/2642769.2642780

[17] S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh,
J. Perkins, and D. K. Panda, “Non-blocking PMI Ex-
tensions for Fast MPI Startup,” in Int’l Symposium on
Cluster, Cloud, and Grid Computing (CCGrid 2015), To
appear in 2015.

[18] Open MPI: Open Source High Performance Comput-
ing, “PMI Exascale (PMIx),” https://github.com/open-
mpi/pmix/wiki.

[19] T. El-Ghazawi and L. Smith, “UPC: Unified Parallel C,”
in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM, 2006, p. 27.

[20] R. W. Numrich and J. Reid, “Co-Array Fortran for
Parallel Programming,” in ACM Sigplan Fortran Forum,
vol. 17, no. 2. ACM, 1998, pp. 1–31.

[21] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken, “Titanium: A High-
Performance Java Dialect,” in In ACM, 1998, pp. 10–11.

[22] InfiniBand Trade Association, http://www.infinibandta.
org/.

[23] (2015) Stampede, Texas Advanced Computing
Center. [Online]. Available: https://www.tacc.utexas.
edu/stampede/

[24] (2015) OSU Micro-Benchmarks. [Online]. Available:
http://mvapich.cse.ohio-state.edu/benchmarks/

[25] (2015) NASA Parallel Benchmarks for OpenSHMEM.
[Online]. Available: http://www.openshmem.org/site/
Downloads/Examples

[26] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, R. S. Schreiber, H. D.
Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
NAS Parallel Benchmarks - Summary and Preliminary
Results,” in Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing, ser. Supercomputing
’91. New York, NY, USA: ACM, 1991, pp. 158–165.
[Online]. Available: http://doi.acm.org/10.1145/125826.
125925

[27] C. J. Palansuriya, C.-H. Lai, C. S. Ierotheou, and K. A.
Pericleous, “A Domain Decomposition Based Algorithm
For Non-linear 2D Inverse Heat Conduction Problems,”
Contemporary mathematics, vol. 218, pp. 515–522, 1998.

[28] J. Wu, J. Liu, P. Wyckoff, and D. Panda, “Impact of On-
Demand Connection Management in MPI over VIA,” in
In CLUSTER 02: Proceedings of the IEEE International
Conference on Cluster Computing. IEEE Computer
Society, 2002, pp. 152–159.

[29] A. Vishnu and M. Krishnan, “Efficient On-Demand Con-
nection Management Mechanisms with PGAS Models
over InfiniBand,” in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Confer-
ence on. IEEE, 2010, pp. 175–184.

[30] W. Yu, J. Wu, and D. K. Panda, “Fast and Scalable
Startup of MPI Programs in InfiniBand Clusters,” in
HiPC 2004. Springer, 2005, pp. 440–449.

[31] W. Yu, Q. Gao, and D. K. Panda, “Adaptive Connection
Management for Scalable MPI over InfiniBand,” in Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), 2006.

[32] M. J. Koop, T. Jones, and D. K. Panda, “Reducing
Connection Memory Requirements of MPI for
InfiniBand Clusters: A Message Coalescing Approach,”
in Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid,
ser. CCGRID ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 495–504. [Online].
Available: http://dx.doi.org/10.1109/CCGRID.2007.92

[33] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda, “Shared
Receive Queue based Scalable MPI Design for Infini-
Band Clusters,” in International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[34] M. J. Koop, T. Jones, and D. K. Panda, “MVAPICH-
Aptus: Scalable High-performance Multi-transport MPI
over InfiniBand,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 1–12.

[35] J. Jose, K. Kandalla, M. Luo, and D. Panda, “Supporting
Hybrid MPI and OpenSHMEM over InfiniBand: Design
and Performance Evaluation,” in Parallel Processing
(ICPP), 2012 41st International Conference on, Sept
2012, pp. 219–228.

http://doi.acm.org/10.1145/2642769.2642780
http://doi.acm.org/10.1145/2642769.2642780
http://www.infinibandta.org/
http://www.infinibandta.org/
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/stampede/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.openshmem.org/site/Downloads/Examples
http://www.openshmem.org/site/Downloads/Examples
http://doi.acm.org/10.1145/125826.125925
http://doi.acm.org/10.1145/125826.125925
http://dx.doi.org/10.1109/CCGRID.2007.92

	Introduction and Motivation
	Contributions
	Background
	Partitioned Global Address Space
	OpenSHMEM
	InfiniBand
	GASNet
	Process Management Interface

	Design and Implementation
	Two-Phase Connection Establishment in InfiniBand
	Key Exchange in OpenSHMEM
	On-demand Connection Mechanism in OpenSHMEM
	Overlapping PMI Communication with Initialization
	Shared Memory Based Intra-Node Barrier

	Experimental Results
	Experimental Setup
	Impact on Job Startup
	Performance of Point-to-point and Collective Operations
	Performance of OpenSHMEM Application
	Performance of Hybrid (MPI+OpenSHMEM) Application
	Impact on Resource Usage and Scalability

	Related Work
	Conclusion and Future Work

