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Abstract—With the emergence of larger multi-/many-core
clusters and new areas of HPC applications, performance of
large message communication is becoming more important. MPI
libraries use different rendezvous protocols to perform large
message communication. However, existing rendezvous protocols
do not take the overall communication pattern into account or
make optimal use of the Sender and the Receiver CPUs. In
this work, we propose a cooperative rendezvous protocol that
can provide up to 2x improvement in intra-node bandwidth
and latency for large messages. We also propose designs to
dynamically choose the best rendezvous protocol for each message
based on the overall communication pattern. Finally, we show
how these improvements can increase the overlap of intra-node
communication and computation with inter-node communication
and lead to application level benefits at scale. We evaluate the
proposed designs on three different architectures - Intel Xeon,
Knights Landing, and OpenPOWER against state-of-the-art MPI
libraries including MVAPICH2 and Open MPI. Compared to
existing designs, the proposed designs show benefits of up to 19%
with Graph500, 16% with CoMD, and 10% with MiniGhost.

Index Terms—MPI, Rendezvous Protocols, HPC

I. INTRODUCTION

Modern High-Performance Computing (HPC) systems al-
low scientists and engineers to tackle grand challenges in
their respective domains and make significant contributions
to their fields. The design and deployment of such ultra-scale
systems is fueled by the increasing use of multi-/many-core
environments (Intel Xeon, Xeon Phi, and IBM OpenPOWER
architectures).

The Message Passing Interface (MPI) [1] is the de-facto
standard programming model for developing portable and
high-performance parallel scientific applications. Many MPI
applications spend a significant portion of their overall runtime
inside the MPI library [2–4]. Thus, overall performance of the
application is closely coupled with the performance charac-
teristics of the MPI library. To obtain the best performance,
application developers utilize a variety of communication
primitives such as point-to-point, collective, and one-sided
provided by MPI. Furthermore, applications often use non-
blocking operations to overlap the cost of computation with
communication and reduce the overall execution time [5–7].

For point-to-point communication, MPI libraries broadly
use two schemes — “Eager” and “Rendezvous” [8]. The eager
protocol generally uses a set of known, pre-registered/pre-
allocated buffers to communicate asynchronously with peer

This research is supported in part by National Science Foundation grants
#CNS-1513120, #ACI-1450440 and #CCF-1565414.

processes and is typically used for small messages. On the
other hand, rendezvous protocols use handshaking to avoid
extra copies and are used for large messages. Over the years,
researchers have proposed different rendezvous protocols [9–
11] to improve communication performance or overlap in
specific scenarios. However, none of the protocols proposed in
literature fully utilize all the available resources to efficiently
progress the communication operation. This leads to sub-
optimal resource utilization and sub-par performance. To make
matters worse, MPI libraries often use the same protocol for all
communication operations without considering the nature of
the higher level operation, the overall communication pattern,
and the impact it has on lower level hardware and software
resources. These constraints limit the applicability of the
available rendezvous communication protocols in literature to
specific situations. This lack of a “silver bullet” means that
many of these designs need to be tuned differently based on
the application and system characteristics. Researchers have
proposed methods for static tuning [12, 13] or trace-driven
analysis [14, 15] to mitigate this issue. However, the usability
of these approaches is limited by the need to frequently re-
tune or generate new traces for different applications, or even
different sizes of the input or the job size for the same
application. Hence, it is imperative for modern MPI libraries
to become more introspective and dynamic to be able to cater
to a wide array of applications and hardware systems.

In this paper, we propose novel “cooperative” and “dy-
namic” rendezvous communication protocols that can adapt
to application needs in real time by being cognizant of 1)
the needs of the higher level communication operation in
terms of performance and overlap, 2) overall communication
pattern, and 3) the impact these operations have on lower
level hardware and software resources. We define a process as
being “cooperative” if it satisfies at least one of the following
aspects: 1) shares its resources with other processes to improve
the performance of data transfer, 2) shares local information
about communication primitives or resource utilization with
other processes, or 3) takes local actions to become more
responsive to communication requests from other processes.
The scale of this cooperative behavior can also vary — it can
be between just the sender and the receiver, among processes
within the same node, or among processes spread across
multiple nodes. To the best of our knowledge, this is the first
study to explore cooperative rendezvous protocols that can
dynamically adapt to the application’s needs. Experimental

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE



evaluations show that our proposed family of protocols can
select appropriate protocols at a per-message granularity and
offer improved performance and overlap for point-to-point and
collective operations as well as overall application execution
time. With the proposed designs, we were able to improve the
runtime of Graph500, CoMD, and MiniGhost by 19%, 16%,
and 10% respectively.

A. Overview of Rendezvous Protocols in MPI

With increasingly dense nodes with multi-/many-core archi-
tectures and larger systems, application scientists are trying to
solve larger problems. For many applications, this translates
to an increase in the size of the messages being communi-
cated. For large messages, the cost of copying the data is
the dominant factor for both transfers within the same node
and across different nodes. MPI libraries use a variety of
rendezvous protocols to minimize this copying cost. Broadly,
these protocols can be divided into two schemes — write-
based and read-based. Figure 1 shows two such protocols
commonly used by MPI libraries. In these protocols, the sender
and the receiver perform a handshake to exchange information
about the buffers using RTS (Request-to-Send) and CTS
(Clear-to-Send) packets. After the handshake is performed, the
sender writes the data to the receiver’s buffer in case of RPUT
or the receiver reads the data from the sender buffer in case
of RGET. In most high-performance MPI libraries, RDMA
write or read operation is used if the sender and receiver are
located on different nodes. In case of intra-node transfers,
kernel-assisted single-copy mechanisms such as CMA [16],
XPMEM [17], or KNEM [18] are used to transfer the data.
Once the buffer is copied, a FIN packet is used to signal
completion to the peer. Some researchers have also proposed
Receiver-initiated protocols [11] where the receiver initiates
the handshake by sending an RTR (Ready-to-Receive) packet
to the sender. The same read or write mechanisms are used to
transfer the data. However, most MPI libraries do not use such
receiver-initiated rendezvous protocols since they require extra
complexity to ensure correct matching when ‘ANY SOURCE’
receive operations are used [11, 19, 20].

RTS

CTS

Write Data

FIN

Sender Receiver

(a) Write-based (RPUT)

RTS

FIN

Sender Receiver

Read Data

(b) Read-based (RGET)

Fig. 1: Commonly used rendezvous protocols in MPI. The actual data
movement can be based on kernel-assisted single-copy mechanisms
(e.g. CMA, XPMEM, KNEM) for intra-node transfers and RDMA
Read/Write operations for inter-node transfers.

B. Experimental Setup
We used three different architectures commonly used in

modern HPC systems for our experiments and evaluations.
Table I lists the detailed hardware specification for the these
systems. The initial experiments and the proposed designs
were implemented in the MVAPICH2-2.3rc1 MPI library [21].
The OSU Microbenchmarks Suite [22] (OMB-5.4.2) was used
for the synthetic benchmarks. Further details about the mi-
crobenchmark and application level evaluations can be found
in Sections IV and V.

TABLE I: Hardware specification of the clusters used

Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER-8
Processor Model E5 v2680 KNL 7250 PPC64LE
Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz
No. of Sockets 2 1 2
Cores Per Socket 14 68 10
Threads per Core 1 4 8
RAM (DDR) 128GB 96GB 256GB
Interconnect IB-EDR(100G) IB-EDR(100G) IB-EDR(100G)
Compiler gcc-7.2.0 gcc-7.2.0 gcc-4.8.5
OS/Kernel RHEL7.4/3.10.0 RHEL7.4/3.10.0 RHEL7.2/3.10.0

C. Motivation
For inter-node rendezvous transfers, the copying of data is

handled by the HCA while the CPU only needs to handle the
handshake/control messages. However, for intra-node trans-
fers, either the sender or the receiver CPU needs to copy the
data. Figures 2(a) and 2(b) show the CPU usage profile for an
intra-node, blocking, point-to-point transfer using the RPUT
and the RGET protocols respectively on the Broadwell system.
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Fig. 2: Sender and receiver side CPU usage with different rendezvous
protocols on Broadwell. The CPU performing the copy cannot
perform computation at the same time. Polling represents idle time
and can potentially be overlapped.

Figure 2(a) shows that the RPUT protocol is primarily
driven by the sender process. The sender polls until it receives
the CTS from the receiver and then writes the data to the
receiver’s buffer. As the message size increases, the time spent
in copying becomes more dominant since the time taken for
exchanging the control messages is not affected by the size
of the data. It also shows that the receiver process does not
participate in the actual movement of the data. Similarly, in
case of RGET, the receiver process performs the actual copy
and the sender spends most of its time polling. Clearly, the
existing rendezvous protocols do not make efficient use of all
the available resources.



In addition to raw performance, the overlap of communi-
cation and computation is also critical for application per-
formance. MPI applications use non-blocking communica-
tion primitives such as MPI Isend/MPI Irecv to overlap the
compute phase with communication. However, for intra-node
transfers, both the application compute as well as the commu-
nication (copying the data) are done by the CPU. Hence, the
amount of overlap can be increased by reducing the amount
of polling and using it for computation. As Figure 2 shows,
RPUT offers good overlap on the receiver side but none on the
sender side. Conversely, RGET offers good sender-side overlap
but no receiver-side overlap. However, offloading the copy
operations to DMA engines or the HCA can free up the CPU
and provide good overlap for both the sender and the receiver.
Clearly, using a statically selected rendezvous protocol for
all transfers cannot account for these different scenarios and
may lead to sub-optimal performance and overlap. These
observations bring us to the first challenge: How can the
sender and the receiver cooperate with each other and
share resources to improve the performance and overlap
of rendezvous transfers?

The choice of the rendezvous protocol also depends on
the overall communication pattern. For example, a one-to-
all communication would be faster with the RGET protocol
compared to RPUT since it distributes the copy operations
among all the non-root processes (receivers) instead of the
root (sender) performing all the copies. Similarly, an all-to-
one communication would benefit from using RPUT instead
of RGET. However, the sender and receiver may not be
aware of the overall communication pattern and the most
suitable rendezvous protocol based only on local information.
This brings us to the second challenge: How can multiple
MPI processes cooperate with each other to discover the
overall communication pattern and dynamically adapt the
communication strategy accordingly?

FIN

P1 P3

RTS
RTS

P2

MPI_SendMPI_Send MPI_Irecv
MPI_Irecv
MPI_Waitall

Copy Data
from P3
(CPU)

Potential
for Overlap

RDMA Read
from P2
(HCA)

Node 2Node 1

Fig. 3: Example of Lost Overlap Potential. It can affect both intra-
node and inter-node transfers.

Since intra-node and inter-node communications are pro-
gressed by different agents (CPU and the HCA), ideally they
should always achieve perfect overlap. However, rendezvous
transfers require the exchange of initial handshake messages

which must be processed by the CPU before the actual data
movement can take place. However, since intra-node transfers
require the CPU to perform blocking copies, the CPU may be
unable to process these handshake messages for a long period
of time for large messages. Figure 3 shows an example of such
a scenario. P1 receives an RTS message from an intra-node
peer P3 and proceeds to perform the copy operation from P3.
P1 is able to process the RTS from another peer P2 and initiate
the RDMA read from P2 only after it has finished this copy
operation. Thus, although these two transfers from P2 and P3
could be perfectly overlapped, P1 does not see any overlap of
these two communications. This observation leads us to the
next challenge: What designs can be employed to improve
the overlap of intra-node and inter-node communication
and overall application performance?

D. Contributions

In this paper, we tackle these challenges and propose
different designs that rely on processes cooperating at local
and global scale to improve the performance, overlap, and
overall communication progress. We also show how these
designs can be combined to develop a truly dynamic and
adaptive design that is applicable to different communication
patterns across applications. To the best of our knowledge, no
scholarly work or MPI implementation has proposed similar
dynamic and cooperative designs for rendezvous protocols. To
summarize, the main contributions of this paper are:
• Study the impact of different rendezvous protocols on intra-

node communication performance and overlap.
• Propose new rendezvous protocols that take advantage of

cooperation between the sender and receiver to improve
performance and overlap.

• Propose new designs to enable cooperation among multiple
processes to discover and dynamically adapt to varying
communication patterns.

• Demonstrate the effectiveness and scalability of proposed
designs using microbenchmarks and representative applica-
tions on different architectures.

II. DESIGNING DYNAMIC AND COOPERATIVE
RENDEZVOUS PROTOCOLS

In this section, we describe the proposed dynamic and
cooperative rendezvous protocols. Broadly, this section is
divided into three parts. The first part considers cooperation
between the sender and the receiver, the second part focuses
on cooperation among intra-node peers, and the third section
describes cooperation among processes on different nodes.

A. Designs based on Sender/Receiver Cooperation

1) Improving Point-to-point Communication Performance:
Based on the results shown in Figure 2, we propose a new
rendezvous protocol that uses cooperation between the sender
and the receiver to accelerate the movement of the data. This
protocol is referred to as the COOP-p2p protocol. Figure 4
shows a high-level overview of this new protocol. Broadly,
it combines the RPUT and RGET protocols described in



Section I-A. The protocol is initiated when the sender sends
an RTS (Ready-to-Send) packet to the receiver. This packet
contains the address of the send buffer and any additional
information required to access it. When it is matched with a
recv operation on the receiver side, the receiver responds with
a CTS (Clear-to-Send) packet which contains the address and
other information about the recv buffer. After sending the CTS,
the receiver proceeds to copy half of the data from the send
buffer to the recv buffer. The sender also copies the other half
of the data once it receives the CTS. These copies can be
performed using any kernel-assisted copy mechanism such as
CMA, XPMEM, or KNEM. Since these two copies are being
done by two different CPU cores, they can progress in parallel.
Once the copy operation is finished, both the sender and the
receiver send a FIN packet to mark the completion. Since the
FIN packet may arrive before or after finishing the local copy
operation, the send/recv operation is marked as completed only
when both the copy operations is finished and the FIN from
the remote process has been received.

RTS

FIN

Sender Receiver

Read Data

CTS

Write Data

FIN

Fig. 4: Design of the
COOP-p2p Protocol
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Fig. 5: Sender CPU usage
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Fig. 6: Receiver CPU usage

Figures 5 and 6 show the CPU utilization on the sender
and the receiver side while using the COOP-p2p protocol on
the Broadwell system. Both CPU cores participate equally
in the data movement, and the overall time spent in polling
and similar overheads is reduced. Figure 7 compares the
performance of the COOP-p2p protocol against RPUT and
RGET protocols on Broadwell. For messages smaller than
32KB, the overhead from the additional FIN packet and
performing two fragmented copies outweigh the benefits of
the increased parallelism. For larger messages, the COOP-p2p
protocol outperforms others and delivers up to 2x improvement
in unidirectional bandwidth for both intra-socket and inter-
socket transfers. However, the COOP-p2p protocol performs
similar to RGET for bidirectional bandwidth since both the
sender and the receiver CPUs are already copying data and
there is no spare CPU capacity left to take advantage of.

2) Offloading Point-to-point Communication for Overlap:
In the past, researchers have explored the strategy of offload-
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Fig. 7: Intra-node bandwidth on Broadwell with different Rendezvous
protocols. COOP-p2p shows upto 2x better unidirectional bandwidth
compared to RPUT or RGET.

ing expensive copy operations to hardware DMA engines to
keep the CPU free for computation [23]. Unfortunately, this
additional DMA hardware is not present in many modern
architectures such as Knights Landing and OpenPOWER. To
make our proposed designs more generic and applicable to a
wider range of systems, we utilize the DMA engine present in
the HCA to offload copy operations. This approach of using
the HCA to progress intra-node transfers using loopback can
leave the CPU free for computation. This approach can provide
close to 100% overlap for both the sender and the receiver,
at the cost of increasing the load on the HCA. However, if
both the CPU and the HCA are available to progress the
communication (e.g., in case of blocking send/recv), using
only one of them is not the optimal use of resources. To ensure
that both the CPU and HCA are used in the transfer, a large
message can be “striped” across both channels.
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Fig. 8: Unidirectional Bandwidth with the proposed design where
both the CPU and the HCA can drive the data transfer.

Figures 8(a) and 8(b) show the unidirectional bandwidth
achieved between two intra-node processes using this approach
on Broadwell and KNL equipped with one EDR HCA. The
bandwidth of the loopback channel (shown as ‘Loopback’)
is similar (100 Gbps) on both architectures since it is mostly
determined by the HCA. However, the bandwidth of the CPU-
driven channel (shown as ‘SHMEM’) is much higher on
Broadwell compared to KNL due to the faster clock-speed
and more complex instruction/data pipelines. ‘Striped’ refers
to the approach of dividing up the message into two equal
parts and sending them through the two different channels at
teh same time. On Broadwell, the memory-copy bandwidth
of the CPU and the HCA are comparable and hence this
approach achieves almost twice the bandwidth compared to
using the CPU alone. However, since the CPU copy perfor-



mance on KNL is significantly slower compared to the HCA,
the ‘Striped’ design offers poor performance. To obtain the
best performance, the ratio of the message communicated
using loopback (HCA) and shared memory (CPU) must be
varied based on the message size and the architecture. The
optimal ratio can be calculated by the following equation:
Roptimal = BandwidthHCA/BandwidthCPU . The perfor-
mance of this design is shown as ‘Tuned’ in Figures 8(a) and
8(b) and referred to as COOP-hca. Note that in this section
we only consider a single pair of communicating processes.
In case of many concurrent transfers, the HCA can get easily
overwhelmed since it has only a single DMA engine. Further,
using the HCA for intra-node communication can also slow
down the inter-node communication due to the additional load.
More advanced cooperative designs to mitigate these issues are
described in Section II-B3.

B. Global Cooperation based Rendezvous Protocols

An MPI application typically performs multiple concurrent
point-to-point operations as well as collective communication.
None of the existing rendezvous protocols, including the
basic cooperative design proposed in Section II-A1 is optimal
for all different communication patterns. For example, in a
one-to-all communication pattern. using RPUT or COOP-p2p
would lead to a load-imbalance at the root process. Similarly,
for an all-to-one communication, using RGET leads to sub-
optimal performance. Hence, the MPI library must consider
the overall communication pattern and select the appropriate
protocol accordingly. In the next few sections, we describe
how multiple processes can cooperate in order to create more
advanced dynamic protocols.

1) Communication Primitive Based Approach: The current
MPI standard provides no portable way for an application to
indicate the overall communication pattern other than using
collective operations. Similarly, an application cannot also
specify the its expected computation time. However, the MPI
library can infer useful information from the actual MPI calls
used. For example, when an MPI process uses a blocking send
or receive operation, it does not expect to spend any time
in computation and its resources (e.g, the CPU) can be used
fully to progress that transfer. On the other hand, if a process
calls a non-blocking operation, it is reasonable to assume that
the process expects to overlap some computation or perform
multiple such operations. In fact, most MPI collectives are
internally implemented on top of individual point-to-point
transfers in this fashion; where blocking and non-blocking
point-to-point operations are used to express the dependency
or the lack of it between individual communications. For
example, MPI Scatter is usually implemented using multiple
non-blocking sends at the root process and a single blocking
receive at the non-root processes.

Based on this information, the MPI library can decide which
protocol is appropriate for a given transfer. For example, if a
sender uses an MPI Send and the receiver uses MPI Irecv,
the RPUT protocol is selected since it ensures that the sender
will perform the copy operation while the receiver will be

able to get more overlap. Table II shows the different MPI
point-to-point communication primitives and the appropriate
protocol for them. For MPI Send and MPI Isend, the rules
are self-explanatory. MPI Ssend is functionally equivalent to a
blocking MPI Send. Since MPI Bsend has an attached buffer,
it can return once the data is copied from the user buffer
to the intermediate buffer. Since MPI Rsend can only be
called after the receiver operation has been posted, a receiver
initiated protocol (RTS) or RPUT is optimal. This approach
also works well for most collective operations. For example,
in the MPI Scatter scenario described above, the proposed
design correctly selects the RGET protocol. We refer to this
design as COOP-coll.

TABLE II: Decision Table for Dynamic Protocol Selection

Operation MPI Recv MPI Irecv

MPI Send COOP RPUT
MPI Isend RGET COOP
MPI Bsend RGET RPUT
MPI Ssend COOP RPUT
MPI Rsend COOP RTR/RPUT

Since all three protocols considered here are sender-
initiated, the sender cannot predict whether a Recv or an
Irecv will match any given Send. Thus, the sender cannot
unilaterally decide which protocol to use and must receive this
information from the receiver. To avoid introducing additional
synchronization, the sender sets an additional bit in the RTS
packet to indicate whether the operation is a Send or an
Isend. Since the format of these control packets are defined
by the MPI implementation, this information can be added
independent on the network. Once the RTS arrives at the
receiver, it is matched with a Recv or an Irecv operation and
the decision tree is used to determine the correct protocol. In
case of RGET, the receiver performs the read operation and
sends the FIN packet to the sender upon completion. In case of
RPUT or COOP, the receiver sends the protocol information
to the sender using the CTS packet. This protocol guarantees
that the sender and the receiver will always decide on the
same protocol for a given message without introducing any
additional control messages.

2) Load-Balancing Rendezvous Design: While the decision
tree-based design described in Section II-B1 works well in
most scenarios, it cannot select the correct protocol in certain
situations. For example, in case of random or stencil-based
communication where the sender uses MPI Isend and the
receiver uses MPI Irecv, both the sender and the receiver
CPU could be used to copy the data. Also, depending on
the communication pattern and random skews, one of the
CPUs could have more copies to perform than the other. Thus,
there is no clear way to predict which rendezvous protocol
would be most beneficial in this scenario. To address this
challenge, we propose a design to dynamically select the
rendezvous protocol based on the “load” of the sender and
the receiver. During initialization, a shared memory window
is created that can hold one counter for each MPI process on



the node. Each counter can be incremented or decremented
atomically and holds the number of copy operations each
process is expected to perform. These counters are used to
determine which rendezvous protocol is going to be used for
each transfer. In general, the protocol is selected such that the
peer with the smaller counter will perform the actual copy.
Once the protocol is selected, the counters for the sender and
the receiver are updated accordingly. Since both the sender
and the receiver are responsible for copying half of the data
in the COOP-p2p design, both their counters are incremented
accordingly. The counters are decremented once the copy
operation is completed. This design ensures that the load-
imbalance between communicating processes is reduced and
is referred to as COOP-load.

3) Adaptive Offload-based Design: Section II-A2 described
how the sender and the receiver process can offload the
communication to the HCA to improve performance and
overlap. However, the bandwidth of the HCA is limited by
the PCI-e bandwidth and is much lower than the system
memory bandwidth. Thus, the HCA can quickly get over-
loaded by multiple concurrent transfers and cause performance
degradation. To maximize the HCA utilization while avoiding
oversubscription, we propose an adaptive offload-based design
that uses additional information exported by the intra-node
peers. To achieve this, a shared memory region similar to the
one used in the COOP-load design, described in Section II-B1,
is used. A shared counter is incremented when a large RDMA
read/write operation is posted to the HCA, and decremented
when the operation is completed. This counter keeps track
of both intra-node (loopback) and inter-node communication
requests and indicates the current load on the HCA. If it
is higher than a predefined threshold, no intra-node commu-
nication is offloaded to the HCA. We also evaluated using
InfiniBand hardware counters but our evaluations showed that
these counters are not updated instantaneously and cannot be
used to determine the instantaneous load on the HCA.
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Fig. 9: Speedup of Multi-Pair Bandwidth on Broadwell through
using the Adaptive Offload Design. Speedup achieved decreases with
increasing number of processes per node.

However, even this adaptive design results in diminishing
returns as the number of processes per node increases. Fur-
thermore, since the HCA has to progress both inter-node and
intra-node communications with this approach, it can increase
the overall communication time significantly for applications
running a large number of processes on each node or per-
forming dense communication patterns. This trend can be
seen in Figure 9, which compares the speedup obtained from
adaptively using the loopback channel in conjunction with

shared memory. With increasing number of communicating
processes per node, the HCA bandwidth gets saturated quickly
and the improvements are reduced. The improvements beyond
100% for 2MB and 4MB messages are due to the loopback
being faster than CPU based copies for very large messages.

C. Cooperative Overlap of Intra-/Inter-node Communication

While the selection of the correct protocol can improve the
performance of intra-node transfers, this does not mitigate the
issue that intra-node copies are blocking in nature. Hence, if
the CPU is progressing a large message intra-node transfer,
processing of control messages can be delayed until the copy
is completed. This can delay a remote process as well as
the copying process from achieving maximum overlap. An
example of such a scenario was shown in Figure 3. Similar
to this situation with a remote process, it can prevent another
process on the same node from starting its own transfer as well.
This reduction in number of concurrent intra-node transfers
or loss of overlap in intra-node and inter-node communication
may lead to sub-optimal performance.

In order to alleviate this issue, we allow the MPI library to
process incoming control messages even when it is performing
some intra-node operation. While threads can be used for this
purpose, they can reduce the performance on fully-subscribed
systems due to context switching overhead and lock contention
issues [24]. Thus, we adopt a chunked copy scheme where
large intra-node messages are split into smaller chunks inter-
nally. This enables the MPI library to enter the progress engine
and process incoming inter-node messages more frequently
for improved overlap. We evaluate the performance of this
design with a pipelined broadcast algorithm typically used for
large messages. As Figure 10 shows, increasing the number of
chunks decreases the performance for messages smaller than 4
MB. However, for larger messages, the chunked design enables
more overlap and improved the overall performance of the
operation. We refer to this design as COOP-chunked.
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Fig. 10: Performance of a Ring-based Broadcast algorithm on Broad-
well with the COOP-chunked design

D. Hybrid Cooperative Rendezvous Protocol

Out of the different proposed designs described in the
previous sections, some designs are compatible or complemen-
tary while some designs are applicable to specific scenarios.
For example, the COOP-coll and COOP-load designs use
the COOP-p2p protocol as part of the dynamic protocol
selection. Similarly, the COOP-chunked design can be applied



to any of the existing rendezvous protocols such as RPUT and
RGET as well. Based on the individual characteristics of the
proposed designs, we combine them intelligently into a single
dynamic scheme, which we refer to as COOP-hybrid. This
design internally uses the previously mentioned designs as
applicable. For example, the COOP-coll protocol is used when
the application calls Send/Irecv or Isend/Recv, but the COOP-
load is used when the application calls Isend/Irecv. Similarly,
the hybrid design triggers the COOP-chunked design or the
COOP-hca design only when the messages are larger than a
certain threshold and the system is under-subscribed. We use
this protocol for our application level evaluations in Section V.

III. APPLICABILITY OF COOPERATIVE RENDEZVOUS
DESIGNS TO INTER-NODE COMMUNICATION

A. Point-to-point communication

The reader may have noticed that we have used the COOP-
p2p protocol only within the same node and not across differ-
ent nodes. A natural question, therefore, is whether the pro-
posed design can be applied to inter-node transfers. However,
our evaluations show that the COOP-p2p design does not offer
performance improvement for inter-node transfers. This can
be explained by the performance trends of current generation
HCAs, as shown in Figure 11. On both FDR and EDR HCAs,
messages larger than 1 MTU (4KB) can saturate the link
bandwidth using a single transfer. Thus, performing multiple
concurrent transfers for medium and large messages does not
yield any additional benefit. For messages smaller than 4KB,
the synchronization overhead from using rendezvous is too
high and eager protocols are preferred. However, as the HCAs
become faster, it is likely that multiple concurrent transfers
would be required to saturate the link and the COOP-p2p
design would perform better. We plan to reevaluate these
designs when HDR InfiniBand HCAs capable of 200 Gbps
become available.
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Fig. 11: IB-verbs level bandwidth for EDR and FDR HCAs on Broad-
well. A single large message transfer can saturate the bandwidth,
removing the requirement for using the COOP-p2p protocol.

B. Collective communication

To evaluate the impact of selecting RDMA-read or RDMA-
write based protocols on collective communication perfor-
mance, we compare the latency of one-to-all and all-to-
one communication patterns using these protocols. Figure 12
shows the results of these experiments on 8 nodes connected
with EDR and running a single process per node to avoid any
intra-node communication. As we can see, even for collective

communication, the difference in performance of RDMA-
read and RDMA-write based protocols is negligible. This
again highlights the fact that for inter-node communication
the network link is the bottleneck. Consequently, for medium
to large messages where rendezvous protocols are applicable,
n parallel RDMA-reads from a single node performs similar
to n sequential writes. Thus, the COOP-coll design described
in Section II-B1 is unlikely to show benefits for inter-node
collective communication.
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Fig. 12: Impact of Rendezvous protocol selection on inter-node
transfers on Broadwell+EDR system. RDMA Read vs. Write has
negligible impact on the collective performance.

IV. PERFORMANCE EVALUATION - MICROBENCHMARKS

In this section we compare the performance of our proposed
designs against the existing protocols used in the MVAPICH2-
2.3rc1 MPI library [21] using the OSU Micro Benchmarks
suite (OMB) [22]. The average of five runs with 1,000 itera-
tions each are reported. For synthetic benchmarks, the run-to-
run variation was minor and ommitted for clarity. Experiments
other than point-to-point benchmarks were run using full-
subscription of physical cores (28, 64, and 20 processes per
node on Broadwell, KNL, and OpenPOWER, respectively).
More details about the different platforms used can be found
in Section I-B.

A. Point-to-Point Benchmarks

Figure 13 compares the intra-socket latency of the proposed
COOP-p2p protocol against existing protocols such as RPUT
and RGET. “Speedup” refers to the improvement obtained
over the default RPUT protocol. As shown in Figures 13(a)
and 13(c), the COOP-p2p design reduces the latency of point-
to-point transfers by up to 2x on Broadwell and OpenPOWER
architectures. On KNL, inter-tile latency is improved by up to
2x (shown in Figure 13(b)) while intra-tile latency is improved
by up to 1.75x. This difference is due to the fact that two
adjacent KNL cores in the same tile shares the same L2
cache while each Xeon core has its own L2 cache. Similar
improvements were obtained for bandwidth, as previously
shown in Figure 7 for the Broadwell architecture. We do not
present the graphs for the other architectures due to space
constraints.

B. Collective Benchmarks

As described in Section II-B1, the COOP-coll design selects
the best rendezvous protocol based on the overall commu-
nication pattern. To evaluate the efficacy of this design, we
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Fig. 13: Intra-socket latency with different protocols on different architectures. COOP-p2p performs upto 2x better than RPUT and RGET.
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Fig. 14: Performance of one-to-all communication pattern on different architectures
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Fig. 15: Performance of all-to-one communication pattern on different architectures

compare it against the existing protocols in three different
communication patterns. Figure 14 compares the performance
of statically selected RPUT and RGET against the pro-
posed cooperative design for one-to-all communication using
MPI Scatter. Since with RGET all the processes perform a
single copy compared to the root performing all the copies
with RPUT, RGET significantly outperforms RPUT in this
scenario. Similarly, for the all-to-one communication pattern
using MPI Gather, RPUT performs better than RGET, as
shown in Figure 15. Figure 16 shows the performance of
the MPI Reduce operation using the Reduce-Scatter-Gather
algorithm. This algorithm is commonly used for large mes-
sages and uses both one-to-all and all-to-one communication
patterns. Due to this, neither RPUT nor RGET can provide the
best performance in both the phases. However, the proposed
COOP-coll design is able to dynamically select the best
protocol based on the communication pattern and outperforms
both. Note that the percentage improvements are smaller as the
numbers shown here also include the time taken for the actual
reduction operation, which is unaffected by the rendezvous
protocol. These experiments show that the proposed design is
able to detect and react to different communication patterns
and provide the best performance.

C. Stencil Benchmark
Stencil codes update an array of elements by running a

kernel in an iterative manner. In each iteration, according to
a fixed pattern, new data is received and is used in the kernel
to update the elements. In the 3D-Stencil benchmark, a 7
point stencil is used, which requires exchanging data with six
neighboring processes. Figure 17(a) shows the communication
latency reported with 1MB messages for the different number
of processes with 28 processes per node. The default design
based on RPUT is compared against the cooperative load-
balancing design (COOP-load) described in Section II-B2. As
shown here, the cooperative design outperforms the default
design by up to 10% and scales well with increasing number
of processes.

To further evaluate the impact of the COOP-load design,
we compare the number of kernel-assisted copy operations
performed by different ranks on a 64 process run with 1 MB
message size and 8 processes per node. Although each process
performs the same number of communication (ignoring the
boundary processes), the amount of intra-node communication
is not the same across all the processes. This is due to each
process having a mix of intra-node and inter-node peers. This
trend results in a load-imbalance in the processes, as depicted
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Fig. 16: Performance of Reduce with Reduce-Scatter+Gather algorithm on different architectures
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Fig. 17: Performance and analysis of 3dstencil benchmark on Broadwell. COOP-load reduces the load-imbalance and overall execution time
by dynamically selecting the rendezvous protocol for each transfer.

in Figure 17(b). Similarly, Figure 17(c) shows the imbalance
in total time taken by the copy operations across processes,
which results in under-utilization of the CPU resources and
sub-optimal performance. However, the proposed COOP-load
design is able to dynamically detect and mitigate this load
imbalance by selecting different rendezvous protocols for
different messages, improving the overall performance. “Ideal”
represents the best achievable performance if all the future
transfers and the time consumed by them is known ahead
of time. It is calculated by averaging the number of copies
and the time spent in copying across all ranks. The proposed
design comes very close (within ±1% ) to this best case
scenario in terms of number of copies. In terms of time spent
in copying, individual copies can take more or less time due to
skews and system noise, leading to a slightly larger difference
(±6%) between the proposed design and the theoretical best.
Note that Figures 17(b) and 17(c) show the outcome of a
single run to highlight the difference between theoretical and
actual performance. Averaging multiple runs would hide these
differences since they are randomly distributed across ranks
for each run.

V. PERFORMANCE EVALUATION - APPLICATIONS

We evaluate three HPC applications - Graph500, CoMD,
and MiniGhost to show the impact of the proposed designs on
overall application performance. These experiments were done
on the Broadwell cluster with full subscription (28 processes
per node). The proposed COOP-hybrid protocol described
in Section II-D is compared against MVAPICH2-2.3rc1 and
Open MPI v3.1.0 [25]. Average and standard deviation of the
execution time over five runs are reported. Relative improve-
ments are calculated compared to MVAPICH2. More details

about problem sizes and other parameters can be found in the
Artifact Description.

A. Graph Processing: Graph500

The Graph500 Benchmark [26, 27] has two kernels, the
first kernel is responsible for generating a large undirected
graph, and the second kernel performs a Breadth-first search.
Graph500 is a data-intensive application and is commonly used
to benchmark the performance of many HPC clusters. We use
the reference implementation of the Graph500 benchmark for
our evaluations.
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Fig. 18: Execution time of Graph500 on Broadwell

Figure 18(a) shows the results of the weak-scaling experi-
ments with Graph500 on Broadwell. The number of vertices
was increased proportional to the increasing number of nodes,
varying from 225 to 230. The default edge factor of 16 was
used. Compared to 1095 seconds and 1106 seconds taken by
MVAPICH2 and Open MPI respectively, the proposed COOP-
hybrid design reduces the execution time to 879 seconds,
representing an improvement of 19% at 896 processes. The
strong scaling experiment also showed similar improvements,
as illustrated in Figure 18(b).



B. Molecular Dynamics: CoMD

CoMD [28] was developed at the Sandia National Laborato-
ries as a part of the Exascale Computing Project (ECP) proxy
applications. CoMD implements various classical molecular
dynamics algorithms and workloads, and serves as a proxy
for the SPaSM [29] application. Figures 19(a) and 19(b) show
the performance of CoMD with weak and strong scaling
parameters, respectively. With weak scaling, the execution
time of CoMD on 896 processes is improved by 16% from
319 seconds with MVAPICH2 and 324 seconds with Open
MPI to 267 seconds. For the strong scaling experiment, we
observed up to 11% benefit with 896 processes.
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Fig. 19: Execution time of CoMD on Broadwell

C. Halo-Exchange: MiniGhost

MiniGhost [30] is part of the Mantevo applications
suite [31]. It represents a three-dimensional nearest-neighbor
halo-exchange communication pattern present in many HPC
applications such as CTH [32]. Our evaluation was performed
using a 2-dimensional 5-point stencil and the default BSPMA
method which exchanges information with the neighbors us-
ing large messages. As shown in Figure 20(a) and 20(b),
MiniGhost shows improvements of 10% and 12% in overall
execution time with 448 processes with weak and strong
scaling respectively. Since MiniGhost is a stencil application,
it shows similar benefits as the 3DStencil kernel as shown in
Section IV-C.
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Fig. 20: Execution time of MiniGhost on Broadwell

VI. RELATED WORK

A number of studies have been conducted to improve the
performance of MPI point-to-point communication that is
based on rendezvous protocols. Small et al. [14] proposed a set
of protocols based on the process arrival patterns and timing
of the Isend/Irecv and Wait calls. However, their proposed
design relies on application traces to select which protocol
should be used. Compared to this, our work relies on the com-
munication primitives used and considers the CPU utilization

of different processes to dynamically adapt to the application
requirements. This makes our proposed designs more practical
and applicable to a wider variety of applications and systems.
Kernel-assisted rendezvous transfer mechanisms and intra-
node collectives have been explored by many researchers as
well [33–37].

Subramoni et al. [38] proposed a dynamic design which
adapts to the communication pattern of each communicating
pair during the runtime by personalizing the eager threshold
for each pair. During the runtime, some pairs can decide
to increase the threshold and use eager protocol for larger
message sizes to minimize the progress time. Takagi et al. [39]
focuses on optimizing the processor-device communications
which in the conventional rendezvous protocols is conducted
using PCI bus as a link to poll for completion of RDMA
transfer. There have been several research studies to take
advantage of asynchronous progress engine to increase the
overlap of communication and computation [40–43]. Gu
et al. [15] complements [14] by proposing a trace-driven
protocol customization based on protocols defined in [14] to
allow the appropriate protocol to be selected for each commu-
nication in a static manner. Other researchers have explored
methods to tune different parameters of the MPI library in
an offline manner to maximize the performance [12, 13, 44–
46]. However, unlike these, our proposed design dynamically
selects the best protocol during the runtime and does not need
any offline tuning.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the performance and over-
lap characteristics of intra-node rendezvous protocols and
identified several inefficiencies in existing designs. To tackle
these inefficiencies, we proposed a set of cooperative and
dynamic rendezvous protocols that allow sender and receiver
processes to share resources and information in order to im-
prove the performance and overlap of point-to-point transfers.
We also proposed cooperative designs that take into account
the overall communication pattern and dynamically adapt to
it. The proposed designs led to better load balancing among
participant processes and improved overlap of intra-node and
inter-node communication. With the proposed designs, we
were able to improve the intra-node latency and bandwidth
of large messages by up to 2x on three different architectures
including Intel Xeon, Xeon Phi (KNL), and OpenPOWER.
The proposed designs also showed significant improvement
in the performance of different collective operations on these
platforms. We evaluated the proposed designs on a set of
representative applications including Graph500, CoMD, and
MiniGhost and obtained improvements of up to 19%, 16%,
and 10% respectively. Going forward, we plan to evaluate
the proposed designs on a more diverse set of applications
on larger scale clusters. We also plan to add support for
MPI T control variables (CVARs) to allow applications and
external tools to provide additional hints for dynamic selection
of rendezvous protocols.
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APPENDIX

A. Abstract
The artifact contains a software package that we have devel-

oped for this work. The software implements the Cooperative
rendezvous designs described in the paper on top of the open-
source MPI library MVAPICH2. This software can also use
Mallanox InfiniBand network adapters.

B. Description
1) Check-list (artifact meta information):
• Algorithms: Hybrid Cooperative Rendezvous Protocol
• Program: COOP MPI library (based on MVAPICH2-2.3rc1)
• Binary: C executables for 3DStencil, Graph500, CoMD,

MiniGhost, and OSU Micro Benchmarks
• Run-time environment: RHEL7, CentOS7
• Hardware: Intel Xeon / Xeon Phi / OpenPOWER CPU,

InfiniBand Network
• Output: Text output of the different applications
• Experiment workflow: Download the tarball and install

the optimized MPI library. Build the benchmarks and
applications with the optimized MPI library. Then run tests
with different modes and process counts

• Experiment customization: Change the input file of the ap-
plication under test and set the desired mode of optimization

• Publicly available?: Yes
2) How software can be obtained (if available):

The proposed designs will be made available
as part of the MVAPICH2 MPI library. It
can be obtained from the following URL:
http://mvapich.cse.ohio-state.edu/downloads/

3) Hardware dependencies: As evidenced by the exper-
iments, the proposed designs are independent of the CPU
and the network architecture and can work on a wide array
of systems. While in this paper we only evaluate InfiniBand
networks, the designs can be easily extended to other RDMA
capable networks such as Intel Omni-Path.

4) Software dependencies: As the proposed designs are
implemented on top of the MVAPICH2 MPI library, its
software dependencies such as InfiniBand verbs library (libib-
verbs), CMA, XPMEM, etc. are also inherited by the provided
software.

C. Installation
Instructions to install and setup the MPI library can be
found in the included README. More details can be
found in the Useguide located at the following URL:
http://mvapich.cse.ohio-state.edu/static/
media/mvapich/mvapich2-2.3-userguide.html

After installing the COOP MPI library, the applications
need to be installed against this library. To do so, mpicc and
mpicxx flags in the Makefile of these applications should be
pointed to the installation of the MPI libraries. After that, these
applications need to be configured and compiled. For example,
the OSU Micro-Benchmarks suite is available for download at:
http://mvapich.cse.ohio-state.edu/benchmarks/

It should be configured and installed as follows:
$ ./configure --prefix=path/to/install

CC=mpicc CXX=mpicxx $ make; make install

D. Experiment workflow

For these experiments, a script will be available that sets the
proper environment variables to enable the optimization that
one would like to use by following commands:
$ ./run_test.sh /path/to/app/binary

-protocol <RPUT/RGET/AUTO>
Other combinations can be tested similarly.

E. Evaluation and expected result

As the results of the jobs are redirected to sdtout, one can
find the results in the output file provided by the job scheduler.
The results file contains the latency numbers for a different set
of the experiments. Graph500 reports performance numbers as
traversed edges per second (TEPS). CoMD and MiniGhost
generates .yaml files that contains detailed performance
statistics. Total execution time can also be compared using the
Linux time binary. In general, one can expect to see equal
or better performance with the hybrid protocol compared to
other choices such as RPUT or RGET.

F. Experiment customization

Here are the inputs used for our evaluations of the applica-
tions used in the paper:

Graph500:
$ $MPI/bin/mpirun_rsh -np $NPROCS

-hostfile $HOSTFILE $ENV graph500_simple
<SIZE>

Graph500 uses strong scaling by default. There are two
relevant parameters. Number of vertices are calculated as
2SIZE . NUmber of vertices are calculated from the edge
factor. We used the default edge factor of 16. For weak scaling,
SIZE was varied from 25 to 30+ based on the number of
processes.

CoMD:
$ $MPI/bin/mpirun_rsh -np $NPROCS

-hostfile $HOSTFILE $COMMON $ENV CoMD-mpi
-e -i $NPX -j $NPY -k $NPZ -x $NX -y $NY
-z $NZ --nSteps 5000

CoMD uses strong scaling by default. NY and NZ was
fixed to 100 while NX was set as 100*Nodes to achieve weak
scaling. The included example potential files (Cu u6.eam,
Cu01.eam.alloy) were used.

MiniGhost:
$ $MPI/bin/mpirun_rsh -np $NPROCS

-hostfile $HOSTFILE $COMMON MiniGhost.x
--npx $NPX --npy $NPY --npz $NPZ --nx
$NX --ny $NY --nz $NZ --percent_sum
0 --num_vars 1000 --stencil 21
--report_diffusion 0 --report_perf 0
--num_tsteps 100 --num_spikes 1

MiniGhost uses weak scaling by default. NPX was chosen
as the number of nodes. NPY and NPZ were fixed as 7 and
4 to match with 28 ppn. Parameter size < 160, 70, 40 > was
used for strong scaling experiments.


