Job Startup at Exascale: Challenges and Solutions

Overview

Current Trends in HPC

* Tremendous increase in system and job sizes
* Dense many-core systems becoming popular
" Less memory available per process

* Fast and scalable job startup is essential

Importance of Fast Job Startup
"= Development and debugging

"= Regression/Acceptance testing

= Checkpoint restart

Performance Bottlenecks

Static Connection Setup

= Setting up O(num_procs?) connections is expensive

* OpenSHMEM, UPC and other PGAS libraries lack
on-demand connection management

Network Address Exchange over PMI

* Limited scalability, no potential for overlap

* Not optimized for symmetric exchange

Global Barriers

* Unnecessary synchronization and connection setup

Memory Scalability Issues
= Each node requires O(number of processes *

processes per node) memory for storing remote
endpoint information

Proposed Solutions

On-demand Connection Management (@)

= Exchange information and establish connection only
when two peers are trying to communicatel'l

PMIX_Ring Extension (p)

* Move bulk of the data exchange to high-
performance networks!?]

Non-blocking PMI Collectives (¢)(d)

= Overlap the PMI exchange with other tasks!?]

Shared-memory based PMI Get/Allgather (¢

= All clients access data directly from the launcher
daemon through shared memory regions!*

Summary

* Near-constant MPl and OpenSHMEM initialization
time at any process count

* |Ox and 30x improvement in startup time of MPI and
OpenSHMEM respectively at 16,384 processes

" Reduce memory consumption by O(ppn)

* |GB Memory saved @ |M processes and 16 ppn

(O]
S ¢ n) M O. () @ @ On-demand Connection
i B
O ¥
= £ (b) PMIX_Ring
20
S| [P| PGAS- State of the art o) (c) PMIX_lbarrier
o .S —
O)
> & (M) MPI - State of the art (d) PMIX_lallgather
=] I —
s O] PGASIMPI - Optimized O] (e) Shmem based PM
Job Startup Performance
References

['l On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI.
(Chakraborty et al, HIPS ’15)

[2] PMI Extensions for Scalable MPI Startup. (Chakraborty et al, EuroMPI/Asia ’ | 4)

[31 Non-blocking PMI Extensions for Fast MPI Startup. (Chakraborty et al, CCGrid ’I5)
[SHMEMPMI — Shared Memory based PMI for Improved Performance and Scalability.
(Chakraborty et al, CCGrid ’16)

More Information

= Auvailable in latest MVAPICH2 and MVAPICH2-X
" http://mvapich.cse.ohio-state.edu/downloads/
" https://go.osu.edu/mvapich-startup

=]

% Challenges

Static Connection Setup

= Setting up connections takes over 85% of the total
startup time with 4,096 processes

= RDMA operations require exchanging information
about memory segments registered with the HCA

Breakdown of OpenSHMEM lInitialization Application Processes Average Peers

35 64 8.7

7 30 Connection Setup BT 1024 106

§ 25 m PMI Exchange = 64 3.0
(]

% 20 Memory Registration 1024 5.0
0

< 1S ® Shared Memory Setup MG 64 9.5

2 10 1024 1.9

= m Other 64 3.8

> B SP

0 B B B BEBE B B B 1024 10.7

32 64 128 256 512 IK 2K 4K 9D Heat e 5.3

Number of Processes 1024 5.4

Shortcomings of Current PMI design

* Puts and Gets are local operations

" Fence consumes most of the time

= Time taken for Fence grows approximately linearly
with amount of data transferred (number of keys)

Breakdown of MPI_Init Time spent in Put, Fence, & Get

2.5 vi
PMI Exchanges ——Fence
= 6
% 2 m Shared Memory 1‘_';‘ - =Pyt
é m Other S
— 1.5 3 4 Gets
- Z
— c
= n 93
£ 1<
E o)
=05 3
0 0 ——r——r————a—a—d—a
32 64 128256 512 IK 2K 4K 8K 6 64 25 Ik 4k 16k

Number of Processes Number of Processes

Non-blocking PMI Collectives

* PMI operations are progressed by separate
processes handling process management

= MPl library not involved in progressing PMI
communication

= Similar to Functional Partitioning approaches

"= Can be overlapped with other initialization tasks

PMIX_Request

* Non-blocking collectives return before the
operations is completed

= Return an opaque handle to the request object that

can be used to check for completion

Memory Scalability in PMI

PMI| communication between the server and the
clients are based on local sockets

= Latency is high with large number of clients

= Copying data to client’s memory causes large
memory overhead

Time Taken by one PMI_Get PMI Memory Usage

10000 ,
——PPN = |6
1000

-=-PPN = 32
100

10

I

0.1
0.01

300

(O
o

- = N N
b1 O U1 O
©o O O o

Memory Usage per Node (MB)

Time Taken (milliseconds)

o

G BN D P N\

Number of Processes

I 2 4 8 16 32
Number of Processes

% Solution

On-demand Connection Establishment

Main Connection Main Connection
Thread Manager Thread Thread Manager Thread
| I
Put/Get | Create QP : :
(P2) | QP=>lnit : Connect Request :
FnqueueSend | (LD, QPN) X
; (addre_s; size, rkey) | T T > Create QP
: Connect Reply : QP—>Init
: LD, QPN) [- QPRI
- ===~ (address, s]z-e_rkey) ;
Connection : QP->RTR :
Established | QP->RTS !
IDemEnE : Put/Get _ :
Send | (P2) QP->RTS I
: Connection :
¥ v JEstablished J
Process | Process 2

New Collective — PMIX Ring

A ring can be formed by exchanging data with only
the left and the right neighbors
" Once the ring is formed, data can be exchanged

over the high speed networks like InfiniBand
= int PMIX_Ring(char value[], char left[], char right[], ...)

PMI Fence with different
Number of Puts

——100% Put + Fence

Time Taken by PMIX_Ring

/fw*

o

~8-50% Put + Fence

©c o ©
(O ' NN
N

0.4 Fence Only

Time Taken (Seconds)

©c o o
- NN W
AN

Time Taken (milliseconds)
0o

—_— e) e e |

16 64 256 | K 4K 6K 16 64 256 | K 4K |6K
Number of Processes

o
;

1

L
o

Number of Processes

PMIX KVS lIfence

* Non-blocking version of PMI2_KVS Fence
= int PMIX_KVS Ifence(PMIX_Request *request)

PMIX lallgather

* Optimized for symmetric data movement
" Reduces data movement by up to 30%
= 286KB - 208KB with 8,192 processes
= int PMIX lallgather(const char value[],
char buffer[], PMIX Request *request)

PMIX Wait

" Wait for the specified request to be completed
= int PMIX_ Wait(PMIX _Request request)

Shared Memory (shmem) based PMI

Open a shared memory channel between the
server and the clients

* A hash table is suitable for Fence while Allgather
only requires an array of values

= Use a hash table based on two shmem regions for

efficient insertion and merge, and compactness
Hash Table (Table)

Tail Key Next

% Results

Results — On-demand Connectionl!!

= 29.6 times faster initialization time

* Hello world performs 8.3 1 times better

= Execution time of NAS benchmarks improved by
up to 35% with 256 processes and class B data

Execution time of OpenSHMEM
NAS Parallel Benchmarks

Performance of OpenSHMEM

Initialization and Hello World
100

(0 o)

-#-Hello World - Static m Static

(00}
o

—éstart_pes - Static ® On-demand

o

—+—Hello World - On-demand

N

start_pes - On-demand

N
o

Time Taken (Seconds)
(0)
o

N

Execution Time (seconds)

N
o

o
o

16 32 64 128256512 IK 2K 4K 8K BT EP MG SP
Number of Processes Benchmark

Results — PMI Ring Extensionl?]

* MPI_Init based on PMIX_Ring performs 34% better
compared to the default PMI2_KVS Fence

* HelloWorld runs 33% faster with 8K processes

= Up to 20% improvement in total execution time of
NAS parallel benchmarks

NAS Benchmarks with

Performance of MPI_Init and
| K Processes, Class B Data

Hello World with PMIX_Ring

7 7

¢ |~—HelloWorld (Fence) o || e
-’.275 -#-Hello World (Ring) -‘g 5 ® Ring
g 4 MPI_Init (Fence) g’, 4
S 3 | =<MPL_Init (proposed) §C£ 3
E <
v 2 £ 2
E : o —
Fl | e ~

0 0

16 32 64 128 256 512 IK 2K 4K 8K EP MG CG FT BT
Number of Processes Benchmark

Results - Non-blocking PMIL3]

" Near-constant MPI_Init at any scale

= MPI_Init with lallgather performs 288% better than
the default based on Fence

= Blocking Allgather is 38% faster than blocking Fence

Performance Comparison of

Performance of MPI_Init Fence and Allgather

2 1.6
——Fence . ——PMI2_KVS_Fence
> o
'g 16 ® Ifence § |2 -#-PMIX_Allgather
()
3 Allgather %3
~ c
g 1.2 —<lallgather |%o.s
= o
2 E
E 08 | a—ea—ra—% F 04
b ——
0.4 0
64 256 IK 4K 16K 64 256 IK 4K 16K

Number of Processes Number of Processes

Results — Shared Memory based PMIU!

= PMI Get takes 0.25 ms with 32 ppn

= |,000 times reduction in PM| Get latency compared
to default socket based protocol

* Memory footprint reduced by O(Processes Per

Node) = IGB @ |IM processes, 16 ppn
* Backward compatible, negligible overhead

Time Taken by one PMI_Get PMI Memory Usage

—o—Fence - Default
-#-Allgather - Default
Fence - Shmem

—<Allgather - Shme

300 10000

-=-Default

N
(O
o

1000

Shmem

N
o
o

100

o u
S o

|10

Ul
o

Memory Usage per Node (MB)

Time Taken (milliseconds)

o

| ’) 4 8 16 32 32K 64K 128K 256K 512K IM

Number of Processes Number of Processes

Sourav Chakraborty, Dhabaleswar K Panda, (Advisor), The Ohio State University

