Job Startup at Exascale: Challenges and Solutions

Overview

Current Trends in HPC

* Tremendous increase in system and job sizes
* Dense many-core systems becoming popular
" Less memory available per process

* Fast and scalable job startup is essential

Importance of Fast Job Startup
"= Development and debugging

"= Regression/Acceptance testing

= Checkpoint restart

Performance Bottlenecks

Static Connection Setup

= Setting up O(num_procs?) connections is expensive

*  OpenSHMEM, UPC and other PGAS libraries lack
on-demand connection management

Network Address Exchange over PMI

* Limited scalability, no potential for overlap

* Not optimized for symmetric exchange

Global Barriers

* Unnecessary synchronization and connection setup

Memory Scalability Issues
= Each node requires O(number of processes *

processes per node) memory for storing remote
endpoint information

Proposed Solutions

On-demand Connection Management (@)

= Exchange information and establish connection only
when two peers are trying to communicatel'l

PMIX_Ring Extension (p)

* Move bulk of the data exchange to high-
performance networks!?]

Non-blocking PMI Collectives (¢)(d)

= Overlap the PMI exchange with other tasks!?]

Shared-memory based PMI Get/Allgather (¢

= All clients access data directly from the launcher
daemon through shared memory regions!*

Summary

* Near-constant MPl and OpenSHMEM initialization
time at any process count

* |Ox and 30x improvement in startup time of MPI and
OpenSHMEM respectively at 16,384 processes

" Reduce memory consumption by O(ppn)

* |GB Memory saved @ |M processes and 16 ppn
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More Information

= Auvailable in latest MVAPICH2 and MVAPICH2-X
" http://mvapich.cse.ohio-state.edu/downloads/
" https://go.osu.edu/mvapich-startup
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% Challenges

Static Connection Setup

= Setting up connections takes over 85% of the total
startup time with 4,096 processes

= RDMA operations require exchanging information
about memory segments registered with the HCA
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Shortcomings of Current PMI design

*  Puts and Gets are local operations

" Fence consumes most of the time

= Time taken for Fence grows approximately linearly
with amount of data transferred (number of keys)

Breakdown of MPI_Init Time spent in Put, Fence, & Get
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Non-blocking PMI Collectives

* PMI operations are progressed by separate
processes handling process management

= MPl library not involved in progressing PMI
communication

= Similar to Functional Partitioning approaches

"= Can be overlapped with other initialization tasks

PMIX_Request

* Non-blocking collectives return before the
operations is completed

= Return an opaque handle to the request object that

can be used to check for completion

Memory Scalability in PMI

PMI| communication between the server and the
clients are based on local sockets

= Latency is high with large number of clients

= Copying data to client’s memory causes large
memory overhead
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% Solution

On-demand Connection Establishment
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New Collective — PMIX Ring

A ring can be formed by exchanging data with only
the left and the right neighbors
" Once the ring is formed, data can be exchanged

over the high speed networks like InfiniBand
= int PMIX_Ring(char value[], char left[], char right[], ...)
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PMIX KVS lIfence

* Non-blocking version of PMI2_KVS Fence
= int PMIX_KVS Ifence(PMIX_Request *request)

PMIX lallgather

* Optimized for symmetric data movement
" Reduces data movement by up to 30%
= 286KB - 208KB with 8,192 processes
= int PMIX lallgather(const char value[],
char buffer[], PMIX Request *request)

PMIX Wait

"  Wait for the specified request to be completed
= int PMIX_ Wait(PMIX _Request request)

Shared Memory (shmem) based PMI

Open a shared memory channel between the
server and the clients

* A hash table is suitable for Fence while Allgather
only requires an array of values

= Use a hash table based on two shmem regions for

efficient insertion and merge, and compactness
Hash Table (Table)

Tail Key Next

% Results

Results — On-demand Connectionl!!

= 29.6 times faster initialization time

* Hello world performs 8.3 1 times better

= Execution time of NAS benchmarks improved by
up to 35% with 256 processes and class B data

Execution time of OpenSHMEM
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Results — PMI Ring Extensionl?]

* MPI_Init based on PMIX_Ring performs 34% better
compared to the default PMI2_KVS Fence

* HelloWorld runs 33% faster with 8K processes

= Up to 20% improvement in total execution time of
NAS parallel benchmarks
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Performance of MPI_Init and
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Results - Non-blocking PMIL3]

" Near-constant MPI_Init at any scale

= MPI_Init with lallgather performs 288% better than
the default based on Fence

= Blocking Allgather is 38% faster than blocking Fence

Performance Comparison of

Performance of MPI_Init Fence and Allgather
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Results — Shared Memory based PMIU!

= PMI Get takes 0.25 ms with 32 ppn

= |,000 times reduction in PM| Get latency compared
to default socket based protocol

* Memory footprint reduced by O(Processes Per

Node) = IGB @ |IM processes, 16 ppn
* Backward compatible, negligible overhead
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