
Current Trends in HPC
§ Tremendous increase in system and job sizes
§ Dense many-core systems becoming popular
§ Less memory available per process
§ Fast and scalable job startup is essential

Importance of Fast Job Startup
§ Development and debugging
§ Regression/Acceptance testing
§ Checkpoint restart

Performance Bottlenecks
Static Connection Setup
§ Setting up O(num_procs2) connections is expensive
§ OpenSHMEM, UPC and other PGAS libraries lack 

on-demand connection management
Network Address Exchange over PMI
§ Limited scalability, no potential for overlap
§ Not optimized for symmetric exchange
Global Barriers
§ Unnecessary synchronization and connection setup

Memory Scalability Issues
§ Each node requires O(number of processes * 

processes per node) memory for storing remote 
endpoint information

Proposed Solutions
On-demand Connection Management
§ Exchange information and establish connection only 

when two peers are trying to communicate[1]

PMIX_Ring Extension
§ Move bulk of the data exchange to high-

performance networks[2]

Non-blocking PMI Collectives
§ Overlap the PMI exchange with other tasks[3]

Shared-memory based PMI Get/Allgather
§ All clients access data directly from the launcher 

daemon through shared memory regions[4]

Summary
§ Near-constant MPI and OpenSHMEM initialization 

time at any process count
§ 10x and 30x improvement in startup time of  MPI and 

OpenSHMEM respectively at 16,384 processes
§ Reduce memory consumption by O(ppn)
§ 1GB Memory saved @ 1M processes and 16 ppn
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More Information
§ Available in latest MVAPICH2 and MVAPICH2-X
§ http://mvapich.cse.ohio-state.edu/downloads/
§ https://go.osu.edu/mvapich-startup

Job Startup at Exascale: Challenges and Solutions

Results - Non-blocking PMI[3]

§ Near-constant MPI_Init at any scale
§ MPI_Init with Iallgather performs 288% better than 

the default based on Fence
§ Blocking Allgather is 38% faster than blocking Fence
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PMI2_KVS_Fence

PMIX_Allgather

PMIX_KVS_Ifence
§ Non-blocking version of PMI2_KVS_Fence
§ int PMIX_KVS_Ifence(PMIX_Request *request)

PMIX_Iallgather
§ Optimized for symmetric data movement
§ Reduces data movement by up to 30%
§ 286KB → 208KB with 8,192 processes
§ int PMIX_Iallgather(const char value[],

char buffer[], PMIX_Request *request)

PMIX_Wait 
§ Wait for the specified request to be completed
§ int PMIX_Wait(PMIX_Request request)

Non-blocking PMI Collectives
§ PMI operations are progressed by separate 

processes handling process management
§ MPI library not involved in progressing PMI 

communication
§ Similar to Functional Partitioning approaches
§ Can be overlapped with other initialization tasks

PMIX_Request
§ Non-blocking collectives return before the 

operations is completed
§ Return an opaque handle to the request object that 

can be used to check for completion

Results – On-demand Connection[1]

§ 29.6 times faster initialization time
§ Hello world performs 8.31 times better
§ Execution time of NAS benchmarks improved by 

up to 35% with 256 processes and class B data

On-demand Connection EstablishmentStatic Connection Setup
§ Setting up connections takes over 85% of the total 

startup time with 4,096 processes
§ RDMA operations require exchanging information 

about memory segments registered with the HCA

ResultsSolutionChallengesOverview

Results – PMI Ring Extension[2]

§ MPI_Init based on PMIX_Ring performs 34% better 
compared to the default PMI2_KVS_Fence

§ Hello World runs 33% faster with 8K processes
§ Up to 20% improvement in total execution time of 

NAS parallel benchmarks
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New Collective – PMIX_Ring
§ A ring can be formed by exchanging data with only 

the left and the right neighbors
§ Once the ring is formed, data can be exchanged 

over the high speed networks like InfiniBand
§ int PMIX_Ring(char value[], char left[], char right[], …)
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Shortcomings of Current PMI design
§ Puts and Gets are local operations
§ Fence consumes most of the time
§ Time taken for Fence grows approximately linearly 

with amount of data transferred (number of keys)
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Results – Shared Memory based PMI[4]

§ PMI Get takes 0.25 ms with 32 ppn
§ 1,000 times reduction in PMI Get latency compared 

to default socket based protocol
§ Memory footprint reduced by O(Processes Per 

Node) ≈ 1GB @ 1M processes, 16 ppn
§ Backward compatible, negligible overhead

Shared Memory (shmem) based PMI
§ Open a shared memory channel between the 

server and the clients
§ A hash table is suitable for Fence while Allgather

only requires an array of values
§ Use a hash table based on two shmem regions for 

efficient insertion and merge, and compactness

Memory Scalability in PMI
§ PMI communication between the server and the 

clients are based on local sockets
§ Latency is high with large number of clients
§ Copying data to client’s memory causes large 

memory overhead

Sourav Chakraborty, Dhabaleswar K Panda, (Advisor), The Ohio State University
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